Development of a bulgur-like product using extrusion cooking


Koksel H., Ryu G., Ozboy-Ozbas B., Basman A., Ng P.

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, vol.83, no.7, pp.630-636, 2003 (SCI-Expanded) identifier identifier

Abstract

In this study we (1) developed a new bulgur-like foodstuff using a durum wheat cultivar and an extrusion technique, (2) investigated the physicochemical properties of the extrudates produced and (3) sensorially evaluated the end-product after cooking. Durum wheat was processed in a laboratory-scale co-rotating twin-screw extruder with different levels of moisture content of the feed (367, 417 and 455 g kg(-1)), screw speed (150 and 200rpm) and feed rate (2.4 and 2.9kgh(-1)) to develop the bulgur-like product. The effects of extrusion conditions on system variables (die pressure and specific mechanical energy (SME)), physical properties (die swell and bulk density), pasting properties (peak, trough and final viscosities) and cooking and sensory properties of the bulgur-like products were determined. The results indicated that increased feed moisture content resulted in significant decreases in the die pressure and SME values of the extruded durum wheat products. As the moisture content and screw speed increased, the changes in die swell values were not significant. The lowest die swell and highest bulk density values were obtained at the highest feed moisture content. The extrusion variables also affected the pasting properties of the extrudates. Significant increases in each of the pasting properties occurred when the moisture content of the feed was increased. Some of the sensory properties (bulkiness, firmness, stickiness and taste-aroma) improved significantly as the feed moisture content increased, indicating better quality. Increased feed moisture content significantly improved cooking quality as determined by a decrease in colorimetric test results. Extrusion seems to be promising for the production of dry, relatively inexpensive bulgur-like products with acceptable sensory properties. (C) 2003 Society of Chemical Industry.