Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Matematik, Türkiye
Tezin Onay Tarihi: 2023
Tezin Dili: Türkçe
Öğrenci: YUNUS ÖZİŞÇİ
Danışman: Alaattin Esen
Özet:
Bu tez çalışmasında, Modifiye Edilmiş Düzenli Uzun Dalga (MRLW) denklemi, kübik trigonometrik B-spline fonksiyonlar kullanılarak kollokasyon sonlu elemanlar yöntemi ile nümerik olarak çözüldü. Tez, beş bölümden oluşmaktadır. Tezin birinci bölümünde soliter dalgalar ve düzenli dalga denklemlerinin gelişimi kısaca anlatıldı ve MRLW denklemi hakkında literatür taraması verildi. İkinci bölümde sonlu elemanlar, kollokasyon yöntemleri, spline fonksiyonlar, kübik trigonometrik B-spline fonksiyonlar tanıtıldı. Üçüncü bölümde tezde ele alınacak model problemler tanıtıldı. Dördüncü bölümde MRLW denkleminin nümerik çözümleri üç farklı lineerleştirme tekniğiyle elde edildi. Nümerik şemalar; tek soliter dalganın hareketi başta olmak üzere, iki ve üç soliter dalganın girişimi ve Maxwellian başlangıç şartını içeren problemlere uygulanarak test edildi ve elde edilen sonuçlar çizelgeler ve grafikler halinde sunuldu. Von-Neumann tekniği ile lineerleştirilmiş şemalarının şartsız kararlı olduğu gösterildi. Nümerik şemaların performansını değerlendirilmesi amacıyla, L2 ve L∞ hata normları hesaplanarak literatürde var olan nümerik sonuçlarla karşılaştırıldı. Nümerik şemalar uygulanınca kütle, momentum ve enerjiye dair özelliklerin korunduğunu göstermek için C1, C2 ve C3 ile gösterilen korunum sabitlerindeki değişim hesaplandı. Ayrıyeten, soliter dalgaların farklı zamanlara ait hareketleri grafiklerle gösterildi. Sonuç bölümünde de uygulanan teknikler hakkında kısa bir değerlendirme yapıldı.