JOURNAL OF ORGANOMETALLIC CHEMISTRY, cilt.758, ss.1-8, 2014 (SCI-Expanded)
The reaction of [Rh(mu-Cl)(cod)](2) and Ir(eta(5)-C5Me5)(mu-Cl)Cl](2) with aminophosphine ligands Cy2PNHCH2-C4H3X (X: O; S) gave a range of new monodendate [Rh(Cy(2)PNHCH(2)eC(4)H(3)O)(cod) Cl], (1), [Rh(Cy(2)PNHCH(2)eC(4)H3S)(cod) Cl], (2), [Ir(Cy2PNHCH2-C4H3O)(h(5)-C5Me5)Cl-2], (3) and [Ir(Cy2PNHCH2 -C4H3S)(eta(5)-C5Me5)Cl-2], (4) complexes, which were characterized by analytical and spectroscopic methods. The new rhodium(I) and iridium(III) catalysts were applied to transfer hydrogenation of acetophenone derivatives using 2-propanol as a hydrogen source. The results showed that the corresponding alcohols could be obtained with high activity (up to 99%) under mild conditions. Notably, [Rh(Cy2PNHCH2-C4H3O)(cod)Cl] complex (1) is much more active than the other analogous complexes in the transfer hydrogenation. Moreover, organiceinorganic rectifying contacts were fabricated forming rhodium(I) and iridium(III) complex thin films on n-Si semiconductors and evaporating Au metal on the structures. Electrical properties of the contacts including ideality factor, barrier height and series resistance were determined using their currentevoltage (IeV) data. The photoelectrical characteristics of the devices were examined under the light with 40-100 mW/cm(2) illumination conditions. It was seen that light had strong effects on IeV characteristics of the devices and the ones fabricated using 3 and 4 complexes had unusually forward and reverse bias photoconducting behavior. (C) 2014 Elsevier B.V. All rights reserved.