Investigation of structural and electrochemical performance of Ru-substituted LiFePO4 cathode material: an improvement of the capacity and rate performance


Creative Commons License

Yolun A., ALTIN E., Altundag S., Arshad M., Abbas S. M., ALTIN S.

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, cilt.33, sa.9, ss.6670-6680, 2022 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 33 Sayı: 9
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1007/s10854-022-07841-6
  • Dergi Adı: JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Chemical Abstracts Core, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.6670-6680
  • İnönü Üniversitesi Adresli: Evet

Özet

LiRuxFe1-xPO4 (where x = 0.01-0.12) samples are successfully fabricated by conventional solid-state reaction technique and the structural properties are analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and fourier transform infrared spectroscopy (FTIR) measurements. The XRD analysis shows that the minor impurity phases of RuO2 and LiRuO2 are observed for x >= 0.05 samples. Furthermore, the lattice volume is decreased with increasing Ru-content in the structure. The Ru-substituted battery cells exhibit similar cycling voltammetry (CV) data with the unsubstituted LiFePO4 battery cells. According to the charging/discharging cycles measurements for C/3-rate, the best capacity (147.58 mAh g(-1)) is obtained for LiFe0.93Ru0.07PO4 with a capacity fade of 0.0084 per cycle. It is found that Ru-substituted LiFePO4 has maximum C-rate when we analogize with the pristine LiFePO4 and the battery cycling performance is investigated for 4 C-rate up to 100 cycles and 3 and 4 C-rate up to 1000 cycles and it is found that Ru-substituted LiFePO4 exhibits excellent electrochemical performance such as 122, 84.5, and 53.1 mAh g(-1) for 1st, 500th, and 1000th cycles at 4 C-rate.