Analysis of thermoluminescence characteristics of a lithium disilicate glass ceramic using a nonlinear autoregressive with exogenous input model


Isik E., TOKTAMİŞ H., IŞIK İ.

LUMINESCENCE, cilt.35, sa.6, ss.827-834, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 35 Sayı: 6
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1002/bio.3788
  • Dergi Adı: LUMINESCENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Analytical Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, EMBASE, INSPEC, MEDLINE, Metadex, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.827-834
  • Anahtar Kelimeler: dosimetry, lithium disilicate glass ceramic, nonlinear ARX model, system identification, RETROSPECTIVE DOSIMETRY, DENTAL CERAMICS
  • İnönü Üniversitesi Adresli: Evet

Özet

Dental ceramics because of their translucency exemplify the most biologically realistic restorative materials for aesthetic rehabilitation and can be used to estimate dose accumulated as a result of a nuclear accident or attack. In this study, lithium disilicate ceramic obtained from Vivadent Ivoclar, Turkey was studied for its thermoluminescence (TL) properties. The lithium disilicate glass ceramic was irradiated with a Sr-90-Y-90 beta-source from 10 Gy to 6.9 kGy and the results read on a Harshaw 3500 reader. The TL peak of lithium disilicate ceramic showed sublinearity in the range 12 Gy to 6 kGy. The area under the TL glow curve increased by about 25% by the end of 10th measurement cycle. Fading values were also considered after irradiation. Lithium disilicate ceramic samples underwent 37% fading after 1 h and 59% fading after 1 week. In addition to the experimental study, a software-based simulation study was also undertaken using a MATLAB system identification tool. Experimental studies are generally time consuming and some materials used for experiments are very expensive. In this study, experimental, and simulation results were compared and produced almost the same outcome with a similarity of more than 98%.