Optimal allocation of hybrid PVDG and DSVC devices into distribution grids using a modified NRBO algorithm considering the overcurrent protection characteristics


Belbachir N., Zellagui M., Mahmoud H. A., Hashim F. A., Shawi R. E., YAĞIN F. H., ...Daha Fazla

Scientific Reports, cilt.15, sa.1, 2025 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 1
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1038/s41598-025-97606-y
  • Dergi Adı: Scientific Reports
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Chemical Abstracts Core, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: Distributed Static var Compensator, Hybrid System, Modified Newton Raphson Based Optimizer, Overcurrent Protection Characteristics, Photovoltaic Distributed Generation
  • İnönü Üniversitesi Adresli: Evet

Özet

The never-ending issue of inadequate energy availability is constantly on the outermost layer. Consequently, an ongoing effort has been made to improve electric power plants and power system configurations. Photovoltaic Distributed Generators (PVDG) and compensators such as Distributed Static Var Compensator (DSVC) are the center of these recent advances. Due to its high complexity, these devices’ optimum locating and dimensions are a relatively new issue in the Electrical Distribution Grid (EDG). A modified version of Newton Raphson Based Optimizer (mNRBO) has been carried out to optimally allocate the PVDG and DSVC devices in tested IEEE 33 and 69 bus EDG. The mNRBO algorithm integrates four parameters to enhance NRBO’s performance by addressing its limitations in balancing exploration and exploitation. The article suggested novel Multi-Objective Functions (MOF), which have been considered to optimize concurrently the overall amount of active power loss (APL), voltage deviation (VD), relays operation time (TRELAY), as well as improve the coordination time interval (CTI) between primaries and backup relays set up in EDG. The proposed mNRBO algorithm surpasses its basic NRBO version, as long as another alternative algorithm, while providing very good results, such as minimizing the APL from 210.98 kW until 26.482 kW and 224.948 kW until 18.763 kW for the IEEE 33 and 69 bus respectively. Which proves the capability of the mNRBO algorithm of solving such power system challenges.