Analysis of the time-varying energy of brain responses to an oddball paradigm using short-term smoothed Wigner-Ville distribution


Tagluk M., Cakmak E., Karakas S.

JOURNAL OF NEUROSCIENCE METHODS, cilt.143, ss.197-208, 2005 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 143 Konu: 2
  • Basım Tarihi: 2005
  • Doi Numarası: 10.1016/j.jneumeth.2004.10.007
  • Dergi Adı: JOURNAL OF NEUROSCIENCE METHODS
  • Sayfa Sayıları: ss.197-208

Özet

Cognitive brain responses to external stimuli, as measured by event related potentials (ERPs), have been analyzed from a variety of perspectives to investigate brain dynamics. Here, the brain responses of healthy subjects to auditory oddball paradigms, standard and deviant stimuli, recorded on an Fz electrode site were studied using a short-term version of the smoothed Wigner-Ville distribution (STSW) method. A smoothing kernel was designed to preserve the auto energy of the signal with maximum time and frequency resolutions. Analysis was conducted mainly on the time-frequency distributions (TFDs) of sweeps recorded during successive trials including the TFD of averaged single sweeps as the evoked time-frequency (ETF) brain response and the average of TFDs of single sweeps as the time-frequency (TF) brain response. Also the power entropy and the phase angles of the signal at frequency f and time t locked to the stimulus onset were studied across single trials as the TF power-locked and the TF phase-locked brain responses, respectively. TFDs represented in this way demonstrated the ERP spectro-temporal characteristics from multiple perspectives. The time-varying energy of the individual components manifested interesting TF structures in the form of amplitude modulated (AM) and frequency modulated (FM) energy bursts. The TF power-locked and phase-locked brain responses provoked ERP energies in a manner modulated by cognitive functions, an observation requiring further investigation. These results may lead to a better understanding of integrative brain dynamics. (c) 2004 Elsevier B.V. All rights reserved.