meta-Cyanobenzyl substituted benzimidazolium salts: Synthesis, characterization, crystal structure and carbonic anhydrase, -glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties

TÜRKER F., Celepci D. B. , AKTAŞ A. , Taslimi P., GÖK Y. , Aygun M., ...Daha Fazla

ARCHIV DER PHARMAZIE, cilt.351, 2018 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 351 Konu: 7
  • Basım Tarihi: 2018
  • Doi Numarası: 10.1002/ardp.201800029


meta-Cyanobenzyl-substituted N-heterocyclic carbene (NHC) precursors were synthesized by the reaction of a series of N-(alkyl)benzimidazolium with 3-bromomethyl-benzonitrile. These benzimidazolium salts were characterized by using H-1 NMR, C-13 NMR, FTIR spectroscopy, and elemental analysis techniques. The molecular and crystal structures of 2f and 2g complexes were obtained by using the single-crystal X-ray diffraction method. The derivatives of these novel NHC precursors were effective inhibitors of -glycosidase (AG), the cytosolic carbonic anhydrase I and II isoforms (hCA I and II), butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) with K-i values in the range of 1.01-2.12nM for AG, 189.56-402.44nM for hCA I, 112.50-277.37nM for hCA II, 95.45-352.58nM for AChE, and 132.91-571.18nM for BChE. In the last years, inhibition of the CA enzyme has been considered as a promising factor for pharmacologic intervention in a diversity of disturbances such as obesity, glaucoma, cancer, and epilepsy.