Frequency response of uncertain systems: A 2q-convex parpolygonal approach

TAN N. , Atherton D.

IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, cilt.147, ss.547-555, 2000 (SCI İndekslerine Giren Dergi) identifier

  • Cilt numarası: 147 Konu: 5
  • Basım Tarihi: 2000
  • Doi Numarası: 10.1049/ip-cta:20000636
  • Sayfa Sayıları: ss.547-555


The paper deals with the problem of computing the frequency response of an uncertain transfer function whose numerator and denominator polynomials are independent uncertain polynomials of the form P(s, q) = a(0)(q) + a(1)(q)s + ... + a(n)(q)s(n), whose coefficients depend linearly on q = [p(1), p(2), ..., p(q)](T), and the uncertainty box is Q = {q:p(i) is an element of [p(i), p(i)], i = 1, 2, ..., q}. Using the geometric structure of the value set of P(s, q), powerful procedures are developed for computing the frequency response of these uncertain systems. A feature of the approach is the use of the 2q-convex parpolygonal value set of P(s, q) and transition frequency concept. Thus, the approach eliminates some exposed edges of the corresponding polytopes of the numerator and denominator polynomials which are not useful for construction of the Bode, Nyquist, and Nichols envelopes. These results are used for computing robust gain and phase margins, and to design robust controllers for systems with affine linear uncertainty. Examples illustrate the benefit of the presented method.