Apricot Disease Identification based on Attributes Obtained from Deep Learning Algorithms


Turkoglu M., HANBAY D.

International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Türkiye, 28 - 30 Eylül 2018 identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası:
  • Basıldığı Şehir: Malatya
  • Basıldığı Ülke: Türkiye
  • Anahtar Kelimeler: Apricot Disease Detection, Convolutional Neural Networks, AlexNet Model, VggNet Model, KNN Classifier
  • İnönü Üniversitesi Adresli: Evet

Özet

In recent years, deep learning widely used in image processing field, has introduced many new applications related to the agricultural field. In this study, for apricot disease detection were used deep learning models such as AlexNet, Vgg16, and Vgg19 based on pre-trained deep Convolutional Neural Networks (CNN). The deep attributes obtained from these models are classified by K-Nearest Neighbour (KNN) method. To calculate the performance of the proposed methods was applied 10- fold cross-validation test. The dataset consists of 960 images including healthy and diseased apricot images. According to the obtained results, the highest accuracy was obtained as 94.8% by using Vgg16 model.