Novel Electrochemical Approaches for Anticancer Drug Monitoring: Application of CoS@Nitrogen-Doped Amorphous Porous Carbon Composite in Nilotinib Detection


Yıldır M., Genc A. A., Buğday N., ERK N., Peighambardoust N. S., Aydemir U., ...Daha Fazla

ACS Omega, cilt.10, sa.1, ss.261-271, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 1
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1021/acsomega.4c05505
  • Dergi Adı: ACS Omega
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Directory of Open Access Journals
  • Sayfa Sayıları: ss.261-271
  • İnönü Üniversitesi Adresli: Evet

Özet

A novel composite containing CoS and nitrogen-doped amorphous porous carbon (NAPC), denoted as CoS@NAPC, was successfully synthesized from a mixture of cobalt-based ZIF-12 and sulfur through one-pot pyrolysis. The morphology and microstructure of the composites are evaluated with appropriate spectroscopic techniques. CoS@NAPC was used to modify the glassy carbon electrode (GCE) to detect Nilotinib. Under optimized conditions, the GCE electrode modified with CoS@NAPC showed a low limit of detection (LOD) of 11.8 ng/mL and two wide linear concentration ranges of 59.7-1570 and 1570-11200 ng/mL for the determination of Nilotinib. GCE electrode modified with CoS@NAPC has excellent recoveries ranging from 98.41 to 102.03% for real samples, demonstrating its superior analytical performance. The enhanced performance of CoS@NAPC as an electrochemical sensor may stem from the combined action of two key components: CoS, known for its potent reactivity toward Nilotinib, and NAPC, which offers a consistent conductive carbon matrix. CoS contributes to its reactivity, while NAPC facilitates electron transfer during Nilotinib detection. This synergistic effect likely underlies the superior sensor performance observed.