CAAI Transactions on Intelligence Technology, cilt.10, sa.2, ss.529-544, 2025 (SCI-Expanded)
This paper introduces a novel lightweight colour image encryption algorithm, specifically designed for resource-constrained environments such as Internet of Things (IoT) devices. As IoT systems become increasingly prevalent, secure and efficient data transmission becomes crucial. The proposed algorithm addresses this need by offering a robust yet resource-efficient solution for image encryption. Traditional image encryption relies on confusion and diffusion steps. These stages are generally implemented linearly, but this work introduces a new RSP (Random Strip Peeling) algorithm for the confusion step, which disrupts linearity in the lightweight category by using two different sequences generated by the 1D Tent Map with varying initial conditions. The diffusion stage then employs an XOR matrix generated by the Logistic Map. Different evaluation metrics, such as entropy analysis, key sensitivity, statistical and differential attacks resistance, and robustness analysis demonstrate the proposed algorithm's lightweight, robust, and efficient. The proposed encryption scheme achieved average metric values of 99.6056 for NPCR, 33.4397 for UACI, and 7.9914 for information entropy in the SIPI image dataset. It also exhibits a time complexity of (Formula presented.) for an image of size (Formula presented.).