Boron-doped porous carbon material derived from ZIF-11: Investigation of cotton fabric supercapacitor and Li-ion battery performances


Bugday N., ALTIN S., BULUT F., ALTIN E., YAŞAR S.

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, cilt.46, sa.6, ss.7732-7748, 2022 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 46 Sayı: 6
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1002/er.7676
  • Dergi Adı: INTERNATIONAL JOURNAL OF ENERGY RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), Communication Abstracts, Compendex, Environment Index, INSPEC, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.7732-7748
  • Anahtar Kelimeler: Li-ion battery, supercapacitor, wearable energy storage device, ZIF, ZEOLITIC-IMIDAZOLATE-FRAMEWORK, METAL-ORGANIC FRAMEWORKS, DIRECT CARBONIZATION, HYDROTHERMAL SYNTHESIS, NANOPOROUS CARBONS, RECENT PROGRESS, ENERGY-STORAGE, CO2 CAPTURE, NITROGEN, ELECTRODE
  • İnönü Üniversitesi Adresli: Evet

Özet

Nitrogen-doped porous carbon (NPC@ZIF-11) and boron-NPC (BNPC@ZIF-11) materials were synthesized by pyrolysis methods, and structural characterization of the compounds was carried out by scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Brunauer-Elmet-Teller technique, Raman spectroscopy, and inductively coupled plasma-mass spectrometry techniques. The ZIF-11 was converted to the NPC@ZIF11 by pyrolysis. BNPC@ZIF-11 was fabricated from NPC@ZIF-11 by pyrolysis in the presence of phenylboronic acid. The fabric supercapacitor, sandwich-type supercapacitor, and Li-ion battery performances of NPC@ZIF-11 and BNPC@ZIF-11 were investigated. The capacity of the Li-ion cell was found as 720 mAh g(-1) for the first cycle, and it was decreased to 250 mAh g(-1) after 100 cycles. The capacitance values of the cylindrical devices were 92 F g(-1) and 115.6 F g(-1), for C1 and C4000 in KOH electrolytes. The BNPC@ZIF-11 was used as an electrode material on cotton fabric, and the highest obtained capacitance was 72.8 mF for 0.1 mA, which is a promising result for wearable energy storage materials.