Chitosan/polypropylene glycol hydrogel composite film designed with TiO2 nanoparticles: A promising scaffold of biomedical applications


Ulu A., BİRHANLI E., KÖYTEPE S., ATEŞ B.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, cilt.163, ss.529-540, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 163
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.ijbiomac.2020.07.015
  • Dergi Adı: INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, INSPEC, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.529-540
  • Anahtar Kelimeler: Chitosan, Polypropylene glycol, TiO2 nanoparticles, Composite hydrogel membrane, Antimicrobial activity, IN-VITRO, NANOCOMPOSITE, FABRICATION, CU(II)
  • İnönü Üniversitesi Adresli: Evet

Özet

The present study explores the preparation and characterization of chitosan/poly (propylene glycol)/titanium dioxide (CH/PPG/TiO2) composite hydrogels in view of their developing applications such as antimicrobial packaging, wound dressing and antibacterial materials. The prepared CH/PPG/TiO2 films were comprehensively characterized by several methods. The size distribution showed the average size of the TiO2 nanoparticles (NPs) was about 40 nm. Additionally, other properties including swelling ratio, water retention, water contact angle, porosity, water uptake, in vitro enzymatic degradation, water vapor transmission rate, in vitro biomineralization studies, and mechanical tests were evaluated in detailed. Besides these characterizations, the antimicrobial activity of CH/PPG/TiO2 composite film against Staphylococcus aureus, Escherichia coli, and Candida lipolytica was evaluated by using disc diffusion method. Based on the obtained results, the CH/PPG/TiO2 composite hydrogels showed enhanced water vapor permeability, porosity, water retention, and swelling ratio. An improvement was observed in the examined mechanical and thermal properties with the addition of TiO2 NPs. The tensile strength and elongation at break values of CH/PPG/TiO2 were 3.0 MPa and 31%, respectively. Most importantly, the CH/PPG/TiO2 composite hydrogels showed strong antimicrobial properties. Finally, the developed composite scaffold prepared in this study may possess potentially useful in biomedical applications. (C) 2020 Elsevier B.V. All rights reserved.