Pharmaceuticals, cilt.18, sa.11, 2025 (SCI-Expanded, Scopus)
Aim: Nephrotic syndrome (NS) represents a complex glomerular disorder with significant clinical heterogeneity across pediatric and adult populations. Although glucocorticosteroids have constituted the mainstay of therapeutic intervention for more than six decades, primary treatment resistance manifests in approximately 20% of pediatric patients and 50% of adult cohorts. Steroid-resistant nephrotic syndrome (SRNS) is associated with substantially greater morbidity compared to steroid-sensitive nephrotic syndrome (SSNS), characterized by both iatrogenic glucocorticoid toxicity and progressive nephron loss with attendant decline in renal function. Based on this, the current study aims to develop a robust machine learning (ML) model integrated with explainable artificial intelligence (XAI) to distinguish SRNS and identify important biomarker candidate metabolites. Methods: In the study, biomarker candidate compounds obtained from proton nuclear magnetic resonance (1 H NMR) metabolomics analyses on plasma samples taken from 41 patients with NS (27 SSNS and 14 SRNS) were used. We developed ML models to predict steroid resistance in pediatric NS using metabolomic data. After preprocessing with MICE-LightGBM imputation for missing values (<30%) and standardization, the dataset was randomly split into training (80%) and testing (20%) sets, repeated 100 times for robust evaluation. Four supervised algorithms (XGBoost, LightGBM, AdaBoost, and Random Forest) were trained and evaluated using AUC, sensitivity, specificity, F1-score, accuracy, and Brier score. XAI methods including SHAP (for global feature importance and model interpretability) and LIME (for individual patient-level explanations) were applied to identify key metabolomic biomarkers and ensure clinical transparency of predictions. Results: Among four ML algorithms evaluated, Random Forest demonstrated superior performance with the highest accuracy (0.87 ± 0.12), sensitivity (0.90 ± 0.18), AUC (0.92 ± 0.09), and lowest Brier score (0.20 ± 0.03), followed by LightGBM, AdaBoost, and XGBoost. The superiority of the Random Forest model was confirmed by paired t-tests, which revealed significantly higher AUC and lower Brier scores compared to all other algorithms (p < 0.05). SHAP analysis identified key metabolomic biomarkers consistently across all models, including glucose, creatine, 1-methylhistidine, homocysteine, and acetone. Low glucose and creatine levels were positively associated with steroid resistance risk, while higher propylene glycol and carnitine concentrations increased SRNS probability. LIME analysis provided patient-specific interpretability, confirming these metabolomic patterns at individual level. The XAI approach successfully identified clinically relevant metabolomic signatures for predicting steroid resistance with high accuracy and interpretability. Conclusions: The present study successfully identified candidate metabolomic biomarkers capable of predicting SRNS prior to treatment initiation and elucidating critical molecular mechanisms underlying steroid resistance regulation.