Tuning smith predictors using simple formulas derived from optimal responses


Kaya I.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, cilt.40, sa.12, ss.2654-2659, 2001 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 40 Sayı: 12
  • Basım Tarihi: 2001
  • Doi Numarası: 10.1021/ie000194r
  • Dergi Adı: INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.2654-2659
  • İnönü Üniversitesi Adresli: Hayır

Özet

Good control of processes with long dead time is often achieved using a Smith predictor configuration. However, not much work has been carried out on obtaining simple tuning rules for a Smith predictor scheme. This paper develops optimal analytical tuning formulas for proportional-integral-derivative (PID) controllers in a Smith predictor configuration assuming perfect matching. Exact limit cycle analysis has been used to estimate the unknown parameters of a first-order plus dead time (FOPDT) or second-order plus dead time (SOPDT) plant transfer function. Simple analytical tuning rules based on these FOPDT and SOPDT are then derived which can be used to tune a PID controller in a Smith predictor scheme. Some examples are given to show the value of the approach presented.