Using Wavelet Transform for Cardiotocography Signals Classification


CÖMERT Z., KOCAMAZ A. F.

25th Signal Processing and Communications Applications Conference (SIU), Antalya, Türkiye, 15 - 18 Mayıs 2017 identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası:
  • Doi Numarası: 10.1109/siu.2017.7960152
  • Basıldığı Şehir: Antalya
  • Basıldığı Ülke: Türkiye
  • İnönü Üniversitesi Adresli: Evet

Özet

As a fetal surveillance technique, cardiotocography (CTG) involves fetal heart rate (FHR), uterine contraction activities, and fetal movements. CTG is practiced as a primary diagnostic test throughout the world to identify events that may pose a risk to the fetus during pregnancy and delivery. In this work, FHR signals carrying vital information on fetus were analyzed by using Haar (haar), Daubechies (db5), and Symlets (sym5) mother wavelet families between levels 1 and 12. The traditionally used morphological and linear features are obtained from FHR. Also, p-norm, Frobenius form, infinity, and negative infinity norms which are obtained separately from the each of the wavelet components were used as a feature to support the classification. The obtained features were applied as an input to k nearest neighbors (kNN) and artificial neural network (ANN) classifiers in order to discriminate the normal and hypoxic fetuses. According to experimental results, 90.51% and 90.21% classification success on the discrimination of normal and hypoxic fetuses were achieved by using haar at level 4 and kNN.