Fabrication and gas sensing properties of C-doped and un-doped TiO2 nanotubes


Kilinc N., Sennik E., Isik M., Ahsen A. S., Ozturk O., Ozturk Z. Z.

CERAMICS INTERNATIONAL, cilt.40, sa.1, ss.109-115, 2014 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 40 Sayı: 1
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1016/j.ceramint.2013.05.110
  • Dergi Adı: CERAMICS INTERNATIONAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.109-115
  • İnönü Üniversitesi Adresli: Hayır

Özet

In this work, un-doped and carbon (C) doped TiO2 nanotubes were fabricated and their hydrogen sensing properties were investigated. A Ti foil was anodized in an aqueous hydrofluoric acid (H:F) electrolyte (0.5 wt%) at room temperature to form TiO2 nanotube arrays. C-doped TiO2 nanotubes were obtained through two methods; a chemical process and thermal acetylene (C2H2) treatment. In the chemical method, a Ti foil was anodized 'in-situ' in aqueous solution of 0.5 wt% polyvinyl alcohol (PVA)+0.5 wt% HF. In the heat treatment method, a Ti foil was anodized in an aqueous (HF) electrolyte (0.5 wt%) to obtain TiO2 nanotubes, and then C-doped TiO2 nanotubes were obtained by heating as-prepared nanotubes at 500 degrees C in a quartz tube under a continuous N-2 and C2H2 flux (1:1). The obtained un-doped and C-doped TiO2 nanotubes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS). The H-2 sensing properties of the nanotubes exposed to 5000 ppm H-2 were investigated at 100 degrees C. C-doped TiO2 nanotubes showed a lower response to H-2 than the undoped TiO2 nanotubes. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.