Deep Learning for Sex Estimation from Whole-Foot X-Rays: Benchmarking CNNs for Rapid Forensic Identification


Çiftçi R., Atik İ., EKEN Ö., Aldhahi M. I.

Diagnostics, cilt.15, sa.22, 2025 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 22
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/diagnostics15222923
  • Dergi Adı: Diagnostics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, EMBASE, Directory of Open Access Journals
  • Anahtar Kelimeler: convolutional neural networks (CNNs), deep learning benchmarking, foot, foot radiographs, forensic applications, sex estimation
  • İnönü Üniversitesi Adresli: Evet

Özet

Background: Accurate sex estimation is crucial in forensic identification when DNA analysis is impractical or remains are fragmented. Traditional anthropometric approaches often rely on single bone measurements and yield moderate levels of accuracy. Objective: This study aimed to evaluate deep convolutional neural networks (CNNs) for automated sex estimation using entire foot radiographs, an approach rarely explored. Methods: Digital foot radiographs from 471 adults (238 men, 233 women, aged 18–65 years) without deformities or prior surgery were retrospectively collected at a single tertiary center. Six CNN architectures (AlexNet, ResNet-18, ResNet-50, ShuffleNet, GoogleNet, and InceptionV3) were trained using transfer learning (70/15/15 train–validation–test split, data augmentation). The model performance was assessed using accuracy, sensitivity, specificity, precision, and F1-score. Results: InceptionV3 achieved the highest accuracy (97.1%), surpassing previously reported methods (typically 72–89%), with balanced sensitivity (97.5%) and specificity (96.8%). ResNet-50 followed closely (95.7%), whereas simpler networks, such as AlexNet, underperformed (90%). Conclusions: Deep learning applied to whole-foot radiographs delivers state-of-the-art accuracy for sex estimation, enabling rapid, reproducible, and cost-effective forensic identification when DNA analysis is delayed or unavailable, such as in mass disasters or clinical emergency settings.