Multi-Loop Model Reference Proportional Integral Derivative Controls: Design and Performance Evaluations


ALAGÖZ B. B. , Tepljakov A., Petlenkov E., YEROĞLU C.

ALGORITHMS, vol.13, no.2, 2020 (ESCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 13 Issue: 2
  • Publication Date: 2020
  • Doi Number: 10.3390/a13020038
  • Journal Name: ALGORITHMS
  • Journal Indexes: Emerging Sources Citation Index (ESCI), Scopus, Academic Search Premier, Aerospace Database, Communication Abstracts, Compendex, INSPEC, Metadex, zbMATH, Directory of Open Access Journals, Civil Engineering Abstracts
  • Inonu University Affiliated: Yes

Abstract

Due to unpredictable and fluctuating conditions in real-world control system applications, disturbance rejection is a substantial factor in robust control performance. The inherent disturbance rejection capacity of classical closed loop control systems is limited, and an increase in disturbance rejection performance of single-loop control systems affects the set-point control performance. Multi-loop control structures, which involve model reference control loops, can enhance the inherent disturbance rejection capacity of classical control loops without degrading set-point control performance; while the classical closed Proportional Integral Derivative (PID) control loop deals with stability and set-point control, the additional model reference control loop performs disturbance rejection control. This adaptive disturbance rejection, which does not influence set-point control performance, is achieved by selecting reference models as transfer functions of real control systems. This study investigates six types of multi-loop model reference (ML-MR) control structures for PID control loops and presents straightforward design schemes to enhance the disturbance rejection control performance of existing PID control loops. For this purpose, linear and non-linear ML-MR control structures are introduced, and their control performance improvements and certain inherent drawbacks of these structures are discussed. Design examples demonstrate the benefits of the ML-MR control structures for disturbance rejection performance improvement of PID control loops without severely deteriorating their set-point performance.