TURKISH JOURNAL OF MATHEMATICS, cilt.46, ss.533-551, 2021 (SCI-Expanded)
In this paper, we construct a new SEIR epidemic model reflecting the spread of infectious diseases. After calculating basic reproduction number R-0 by the next generation matrix method, we examine the stability of the model. The model exhibits threshold behavior according to whether the basic reproduction number R-0 is greater than unity or not. By using well-known Routh-Hurwitz criteria, we deal with local asymptotic stability of equilibrium points of the model according to R-0. Also, we present a mathematical analysis for the global dynamics in the equilibrium points of this model using LaSalle's Invariance Principle associated with Lyapunov functional technique and Li-Muldowney geometric approach, respectively.