Does Dominant Somatotype Differentiate Performance of Jumping and Sprinting Variables in Young Healthy Adults?


Creative Commons License

ÇINARLI F. S., BÜYÜKÇELEBİ H., Esen O., Barasinska M., Cepicka L., Gabrys T., ...Daha Fazla

INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, cilt.19, sa.19, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 19 Sayı: 19
  • Basım Tarihi: 2022
  • Doi Numarası: 10.3390/ijerph191911873
  • Dergi Adı: INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Scopus, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, EMBASE, Food Science & Technology Abstracts, Geobase, MEDLINE, Pollution Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: anthropometry, explosive movement, peak power, somatotype, ANTHROPOMETRIC PROFILE, BODY-COMPOSITION, ELITE, SPEED, POWER, MOMENTUM, STRENGTH, MASS, FAT, VELOCITY
  • İnönü Üniversitesi Adresli: Evet

Özet

The relationship between an athlete's somatotype three-numeral rating and his or her athletic performance is well known. However, a direct effect of the different dominant somatotype on jumping and sprinting variables has not yet been reported. The aim of this study was to investigate the effects of dominant somatotype on sport-specific explosive variables. One hundred and twelve physically active young adults (mean +/- standard deviation age: 21.82 +/- 3.18 years) were somatotype-rated using the Heath-Carter method. Participants were classified as balanced ectomorph, balanced mesomorph, central, mesomorph-endomorph, and mesomorphic ectomorph. Vertical jump and linear sprint tests were performed to measure peak lower body performance and sprint variables (time, speed, and momentum), respectively. The analysis revealed that balanced mesomorph had significantly higher vertical jump (effect size (ES) = 1.10, p = 0.005) and power to body mass (ES = 1.04, p = 0.023) than mesomorph-endomorph. In addition, balanced mesomorph showed significantly superior performance in 30-m sprint time and velocity than central and mesomorph-endomorph (ES range = 0.93-1, p < 0.05). Finally, balanced ectomorph (ES = 1.12, p = 0.009) and mesomorphic ectomorph (ES = 1.10, p = 0.017) were lower in sprint momentum compared to balanced mesomorphs. In conclusion, this study has shown the importance of the interaction between subtypes and athletic performance. The knowledge gained may be important in identifying those who tend to perform well in sports with explosive power and in prescribing training programs.