Robust optimization of SVM hyper-parameters for spillway type selection


GÜL E., Alpaslan N., EMİROĞLU M. E.

AIN SHAMS ENGINEERING JOURNAL, vol.12, no.3, pp.2413-2423, 2021 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 12 Issue: 3
  • Publication Date: 2021
  • Doi Number: 10.1016/j.asej.2020.10.022
  • Journal Name: AIN SHAMS ENGINEERING JOURNAL
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, INSPEC, Directory of Open Access Journals
  • Page Numbers: pp.2413-2423
  • Keywords: Energy dissipation, Dam type, Hyper-parameter optimization, Support vector machine, Hydraulic structure, SUPPORT VECTOR MACHINE, EXPERT-SYSTEM, PREDICTION
  • Inonu University Affiliated: Yes

Abstract

Spillways, which play a vital role in dams, can be built in various types. Although several studies have been conducted on hydraulic calculations of spillways, studies on type selection that require heuristics knowledge were limited. The tuning of the hyperparameters in machine learning algorithms is still an open problem. In this paper, a parallel global optimization algorithm is proposed optimizing the hyper-parameters of a Support Vector Machine (SVM) classification model for providing accurate spillway type selection (STS). The random forest method is used to obtain the relative importance of input variables. Besides, a novel spillway dataset was introduced and a novel STS software tool has been developed based on different machine learning algorithms. Several experiments are carried out to demonstrate the effectiveness of the proposed tool and the reliability of data. The hyper-parameters optimized SVM was achieved the best results with 93.81% classification accuracy. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University.