Predictive Modeling of Bacteria-Based Nanonetwork Performance Using Simulation-Driven Machine Learning and Genetic Algorithm Optimization


DUMAN M. O., Isik I., Er M. B., TAĞLUK M. E., Isik E.

Advanced Theory and Simulations, 2025 (SCI-Expanded, Scopus) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1002/adts.202501275
  • Dergi Adı: Advanced Theory and Simulations
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Compendex, INSPEC
  • Anahtar Kelimeler: bacteria-based molecular communication, escherichia coli, genetic algorithm, machine learning, molecular communication, nanonetworks, nanotechnology
  • İnönü Üniversitesi Adresli: Evet

Özet

Bacteria-based nanonetwork (BN) offers a biologically inspired solution for enabling information exchange between nanomachines (NMs) in environments where traditional communication methods are ineffective. This study presents a 2D simulation model of a BN system that captures the chemotactic behavior of a single Escherichia coli (E. coli) bacterium navigating from a transmitter (TX) toward a receiver (RX) under varying environmental conditions. Key parameters, which are chemoattractant release rate (Q), TX-RX distance (d), and bacterial lifespan ((Formula presented.)), are systematically varied to evaluate their impact on communication performance, measured in terms of reach time and success rate. To enable accurate performance prediction without the need for computationally expensive repeated simulations, an analytical model is constructed using various machine learning (ML) techniques, including Linear Regression (LR), Random Forest (RF), and Multi-Layer Perceptron (MLP). Hyperparameters of MLP are optimized using a Genetic Algorithm (GA), significantly enhancing predictive accuracy and training stability. The results demonstrate the effectiveness of integrating dynamic simulation with data-driven modeling and hyperparameter optimization to represent complex system behavior. This framework offers valuable design insights for BN system development and supports the creation of efficient, scalable nanonetworks.