Deep learning based brain tumor classification and detection system


Ari A., HANBAY D.

TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, cilt.26, sa.5, ss.2275-2286, 2018 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 26 Sayı: 5
  • Basım Tarihi: 2018
  • Doi Numarası: 10.3906/elk-1801-8
  • Dergi Adı: TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.2275-2286
  • Anahtar Kelimeler: Brain tumor detection, deep learning, extreme learning machine, local receptive fields, IMAGE SEGMENTATION
  • İnönü Üniversitesi Adresli: Evet

Özet

The brain cancer treatment process depends on the physician's experience and knowledge. For this reason, using an automated tumor detection system is extremely important to aid radiologists and physicians to detect brain tumors. The proposed method has three stages, which are preprocessing, the extreme learning machine local receptive fields (ELM-LRF) based tumor classification, and image processing based tumor region extraction. At first, nonlocal means and local smoothing methods were used to remove possible noises. In the second stage, cranial magnetic resonance (MR) images were classified as benign or malignant by using ELM-LRF. In the third stage, the tumors were segmented. The purpose of the study was using only cranial MR images, which have a mass, in order to save the physician's time. In the experimental studies the classification accuracy of cranial MR images is 97.18%. Evaluated results showed that the proposed method's performance was better than the other recent studies in the literature. Experimental results also proved that the proposed method is effective and can be used in computer aided brain tumor detection.