Advanced Sustainable Systems, 2025 (SCI-Expanded, Scopus)
This study investigates the effect of Cu2+ doping on NaMn1-xCuxO2 layered cathodes. It also explores their integration with Laurus nobilis-derived hard carbon (HC) anodes for sodium-ion batteries (SIBs). Cu doping, particularly at x = 0.20, stabilizes the β-NaMnO2 phase, suppresses Jahn–Teller distortions, and improves the structural stability of the MnO2 framework. In situ X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations confirm that Cu improved Na+ diffusion kinetics and reduces charge-transfer resistance, despite its electrochemical inactivity. X-ray Difraction (XRD), Raman, and Fourier transform infrared spectroscopy (FTIR) analyses reveal phase destabilization and segregation at higher Cu concentrations, while XPS indicates shifts in the Mn/Cu oxidation states, consistent with improved electronic conductivity and multivalent redox behavior. The scanning electron microscope (SEM and transmission electron microscopy (TEM) images demonstrate Cu-induced morphological transitions toward denser, more crystalline structures. Brunauer–Emmett–Teller (BET) measurements reveal that the L. nobilis-derived hard carbon (HC) anode possesses a high surface area and hierarchical porosity, which facilitated efficient Na + storage and rapid ion transport. Full-cell tests demonstrate high reversible capacity (≈126 mAh g−1), excellent rate capability, and 56% capacity retention over 250 cycles. This work demonstrates that Cu doping and porous HC anodes synergistically enhance the structural and electrochemical performance of SIBs, thereby providing a sustainable strategy for advanced energy storage.