Hyperspectral image classification using convolutional neural network and two-dimensional complex Gabor transform


Creative Commons License

Hanbay K.

JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, cilt.35, sa.1, ss.443-456, 2020 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 35 Sayı: 1
  • Basım Tarihi: 2020
  • Doi Numarası: 10.17341/gazimmfd.479086
  • Dergi Adı: JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Art Source, Compendex, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.443-456
  • Anahtar Kelimeler: Hyperspectral image classification, deep learning, gabor filtering, REMOTE-SENSING IMAGES
  • İnönü Üniversitesi Adresli: Hayır

Özet

In this paper, a new hyperspectral image classification method based on 2-dimensional complex Gabor filtering and deep convolutional neural networks is proposed. Specifically, as a deep learning model, convolutional neural network is aimed to extract distinctive high-level features. Deep-learned and Gabor feature extraction methodologies are simultaneously performed on the input hyperspectral samples. Gabor features are calculated by implementing complex Gabor filtering only on the first three principal components of the hyperspectral image. The proposed hybrid model uses Gabor transform to obtain local image features, such as edges, corners and texture. The Gabor features of the images are calculated at multiple orientations and frequencies. Then, deep features and Gabor features are fused to obtain a more robust and discriminative feature vector. Hybrid feature vector is used as input to a softmax classifier for hyperspectral image classification. The parameters of the proposed deep learning architecture are optimized using a small training set. Thus, the over-fitting problem of the proposed convolutional neural network has been reduced to some extent. Experiments performed on two popular hyperspectral datasets show that the proposed method can achieve better classification performance than some conventional methods. Classification results demonstrates that the proposed hybrid model is an efficient method for feature extraction and classification of hyperspectral images.