Generalized Quasi-Einstein Metrics and Contact Geometry


Biswas G. G., De U. C., YILDIZ A.

KYUNGPOOK MATHEMATICAL JOURNAL, cilt.62, sa.3, ss.485-495, 2022 (ESCI) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 62 Sayı: 3
  • Basım Tarihi: 2022
  • Doi Numarası: 10.5666/kmj.2022.62.3.485
  • Dergi Adı: KYUNGPOOK MATHEMATICAL JOURNAL
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, Academic Search Premier, zbMATH
  • Sayfa Sayıları: ss.485-495
  • Anahtar Kelimeler: GQE metrics, Almost contact manifolds, Contact manifolds, K-contact manifolds, Sasakian manifolds, K-CONTACT, GRADIENT, MANIFOLDS, (K
  • İnönü Üniversitesi Adresli: Hayır

Özet

The aim of this paper is to characterize K-contact and Sasakian manifolds whose metrics are generalized quasi-Einstein metric. It is proven that if the metric of a K-contact manifold is generalized quasi-Einstein metric, then the manifold is of constant scalar curvature and in the case of a Sasakian manifold the metric becomes Einstein under certain restriction on the potential function. Several corollaries have been provided. Finally, we consider Sasakian 3-manifold whose metric is generalized quasi-Einstein metric.