Co-Liquefaction of Elbistan Lignite with Manure Biomass; Part 1. Effect of Catalyst Concentration

Koyunoglu C., KARACA H.

3rd World Multidisciplinary Earth Sciences Symposium (WMESS), Prague, Çek Cumhuriyeti, 11 - 15 Eylül 2017, cilt.95 identifier identifier


The hydrogenation of coal by molecular hydrogen has not been appreciable unless a catalyst has been used, especially at temperatures below 500 degrees C. Conversion under these conditions is essentially the result of the pyrolysis of coal, although hydrogen increases the yield of conversion due to the stabilization of radicals and other reactive species. Curtis and his co-workers has shown that highly effective and accessible catalyst are required to achieve high levels of oil production from the coprocessing of coal and heavy residua. In their work, powdered hydrotreating catalyst at high loadings an oil-soluble metal salts of organic acids as catalyst precursors achieved the highest levels of activity for coal conversion and oil production. Red mud which is iron-based catalysed has been used in several co-processing studies. It was used as an inexpensive sulphur sink for the H2S evolved to convert Fe into pyrrohotite during coal liquefaction. In this study, Elbistan Lignite (EL) processed with manure using red mud as a catalyst with the range of concentration from 3% to 12%. The main point of using red mud catalyst is to enhance oil products yield of coal liquefaction, which deals with its catalytic activity. On the other hand, red mud acts on EL liquefaction with manure as a catalyst and represents an environmental option to produce lower sulphur content oil products as well.