OBESITY, cilt.19, sa.4, ss.779-783, 2011 (SCI-Expanded)
Our aim was to evaluate whether atrial electromechanical delay measured by tissue Doppler imaging (TDI), which is an early predictor of atrial fibrillation (AF) development, is prolonged in obese subjects. A total of 40 obese and 40 normal-weight subjects with normal coronary angiograms were included in this study. P-wave dispersion (PWD) was calculated on the 12-lead electrocardiogram (ECG). Systolic and diastolic left ventricular (LV) functions, inter-and intra-atrial electromechanical delay were measured by TDI and conventional echocardiography. Inter-and intra-atrial electromechanical delay were significantly longer in the obese subjects compared with the controls (44.08 +/- 10.06 vs. 19.35 +/- 5.94 ms and 23.63 +/- 6.41 vs. 5.13 +/- 2.67 ms, P < 0.0001 for both, respectively). PWD was higher in obese subjects (53.40 +/- 5.49 vs. 35.95 +/- 5.93 ms, P < 0.0001). Left atrial (LA) diameter, LA volume index and LV diastolic parameters were significantly different between the groups. Interatrial electromechanical delay was correlated with PWD (r = 0.409, P = 0.009), high-sensitivity C-reactive protein (hsCRP) levels (r = 0.588, P < 0.0001). Interatrial electromechanical delay was positively correlated with LA diameter, LA volume index, and LV diastolic function parameters consisting of mitral early wave (E) deceleration time (DT) and isovolumetric relaxation time (IVRT; r = 0.323, P = 0.042; r = 0.387, P = 0.014; r = 0.339, P = 0.033; r = 0.325, P = 0.041; respectively) and, negatively correlated with mitral early (E) to late (A) wave ratio (E/A) (r = -0.380, P = 0.016) and myocardial early-to-late diastolic wave ratio (E-m/A(m)) (r = -0.326, P = 0.040). This study showed that atrial electromechanical delay is prolonged in obese subjects. Prolonged atrial electromechanical delay is due to provoked low-grade inflammation as well as LA enlargement and early LV diastolic dysfunction in obese subjects.