Atıf İçin Kopyala
AKBULUT A. S., BALIKÇI ÇİÇEK İ., ÇOLAK C.
HASEKI TIP BULTENI-MEDICAL BULLETIN OF HASEKI, cilt.60, sa.3, ss.196-203, 2022 (ESCI)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
60
Sayı:
3
-
Basım Tarihi:
2022
-
Doi Numarası:
10.4274/haseki.galenos.2022.8440
-
Dergi Adı:
HASEKI TIP BULTENI-MEDICAL BULLETIN OF HASEKI
-
Derginin Tarandığı İndeksler:
Emerging Sources Citation Index (ESCI), Scopus, Academic Search Premier, CINAHL, EMBASE, Directory of Open Access Journals, TR DİZİN (ULAKBİM)
-
Sayfa Sayıları:
ss.196-203
-
Anahtar Kelimeler:
Breast cancer, boosting algorithm, gradient boosting algorithm, XGBoost algorithm, LightGBM algorithm
-
İnönü Üniversitesi Adresli:
Evet
Özet
Aim: The diagnosis of breast cancer can be accomplished using an algorithm or an early detection model of breast cancer risk via determining factors. In the present study, gradient boosting machines (GBM), extreme gradient boosting (XGBoost) and light gradient boosting (LightGBM) models were applied and their performances were compared.