Design and development of travelling-wave-frequency-based transmission line fault locator using TMS320 DSP


ARKAN M., AKMAZ D., MAMİŞ M. S., TAĞLUK M. E.

IET SCIENCE MEASUREMENT & TECHNOLOGY, cilt.13, sa.4, ss.518-522, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 13 Sayı: 4
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1049/iet-smt.2018.5357
  • Dergi Adı: IET SCIENCE MEASUREMENT & TECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.518-522
  • İnönü Üniversitesi Adresli: Evet

Özet

The authors use a TMS320 digital signal processor (TMS320-DSP) to determine fault instants and estimate their location in real time in a laboratory environment. The fault instant is determined via examining the instantaneous differential changes in the line currents. After the fault is detected, the fault location is determined by processing the time-domain transient current waves. First, the travelling-wave frequency is determined by application of the fast Fourier transform to the positive-sequence-component line current after the fault, and subsequently, the fault location is estimated by utilising this frequency. The alternative transients programme (ATP)-electromagnetic transient programme is used to simulate the line currents and create short-circuit fault conditions. Furthermore, LabVIEW software and a National Instruments data acquisition board are used to transform the line currents obtained through the ATP programme into analogue signals. The TMS320-DSP determines the fault in real time and estimates the fault location using the completed software and analogue input signals. Their results indicate that the prototype device designed with the use of the TMS320-DSP is suitable for real-time fault detection.