APPENDIX A | THE PERIODIC TABLE OF ELEMENTS

Color Code			
\square	Other non-metals	\quad	Noble gases
:---			
\square			
Alkali metals	$\quad \square$ Lanthanides		

Figure A1

APPENDIX B | GEOLOGICAL TIME

Figure B1 Geological Time Clock

Figure B2 Geological Time Chart (credit: Richard S. Murphy, Jr.)

APPENDIX C| MEASUREMENTS AND THE METRIC SYSTEM

C1 | Measurements and the Metric System

Measurements and the Metric System

Measurement	Unit	Abbreviation	Metric Equivalent	Approximate Standard Equivalent
Length	nanometer	nm	$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$	$\begin{aligned} & 1 \mathrm{~mm}=0.039 \text { inch } \\ & 1 \mathrm{~cm}=0.394 \text { inch } \\ & 1 \mathrm{~m}=39.37 \text { inches } \\ & 1 \mathrm{~m}=3.28 \text { feet } \\ & 1 \mathrm{~m}=1.093 \text { yards } \\ & 1 \mathrm{~km}=0.621 \text { miles } \end{aligned}$
	micrometer	$\mu \mathrm{m}$	$1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}$	
	millimeter	mm	$1 \mathrm{~mm}=0.001 \mathrm{~m}$	
	centimeter	cm	$1 \mathrm{~cm}=0.01 \mathrm{~m}$	
	meter	m	$\begin{aligned} & 1 \mathrm{~m}=100 \mathrm{~cm} \\ & 1 \mathrm{~m}=1000 \mathrm{~mm} \end{aligned}$	
	kilometer	km	$1 \mathrm{~km}=1000 \mathrm{~m}$	
Mass	microgram	$\mu \mathrm{g}$	$1 \mu \mathrm{~g}=10^{-6} \mathrm{~g}$	$1 \mathrm{~g}=0.035$ ounce $1 \mathrm{~kg}=2.205$ pounds
	milligram	mg	$1 \mathrm{mg}=10^{-3} \mathrm{~g}$	
	gram	g	$1 \mathrm{~g}=1000 \mathrm{mg}$	
	kilogram	kg	$1 \mathrm{~kg}=1000 \mathrm{~g}$	
Volume	microliter	$\mu \mathrm{l}$	$1 \mu \mathrm{l}=10^{-6}$,	$1 \mathrm{ml}=0.034$ fluid ounce $1 \mathrm{I}=1.057$ quarts $1 \mathrm{kl}=264.172$ gallons
	milliliter	ml	$1 \mathrm{ml}=10^{-3}$,	
	liter	I	$1 \mathrm{l}=1000 \mathrm{ml}$	
	kiloliter	kl	$1 \mathrm{kl}=1000 \mathrm{l}$	
Area	square centimeter	cm^{2}	$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$	$1 \mathrm{~cm}^{2}=0.155$ square inch $1 \mathrm{~m}^{2}=10.764$ square feet $1 \mathrm{~m}^{2}=1.196$ square yards 1 ha $=2.471$ acres
	square meter	m^{2}	$\begin{aligned} & 1 \mathrm{~m}^{2}=10,000 \\ & \mathrm{~cm}^{2} \end{aligned}$	
	hectare	ha	1 ha $=10,000 \mathrm{~m}^{2}$	
Temperature	Celsius	${ }^{\circ} \mathrm{C}$	-	$1{ }^{\circ} \mathrm{C}=5 / 9 \times\left({ }^{\circ} \mathrm{F}-32\right)$

Table C1

ANSWER KEY

Chapter 1

1 Figure 1.8 B 3 C 5 A 7 Researchers can approach biology from the smallest to the largest, and everything in between. For instance, an ecologist may study a population of individuals, the population's community, the community's ecosystem, and the ecosystem's part in the biosphere. When studying an individual organism, a biologist could examine the cell and its organelles, the tissues that the cells make up, the organs and their respective organ systems, and the sum total-the organism itself.

Chapter 2

1 Figure 2.3 Potassium-39 has twenty neutrons. Potassium- 40 has twenty one neutrons. $2 \mathrm{~A} 4 \mathrm{~A} \mathbf{6} \mathrm{C} \mathbf{8} \mathrm{D} 10 \mathrm{~A} 12$ Hydrogen bonds and van der Waals interactions form weak associations between different molecules. They provide the structure and shape necessary for proteins and DNA within cells so that they function properly. Hydrogen bonds also give water its unique properties, which are necessary for life. $\mathbf{1 4}$ Water molecules are polar, meaning they have separated partial positive and negative charges. Because of these charges, water molecules are able to surround charged particles created when a substance dissociates. The surrounding layer of water molecules stabilizes the ion and keeps differently charged ions from reassociating, so the substance stays dissolved. 16 A change in gene sequence can lead to a different amino acid being added to a polypeptide chain instead of the normal one. This causes a change in protein structure and function. For example, in sickle cell anemia, the hemoglobin β chain has a single amino acid substitution. Because of this change, the disc-shaped red blood cells assume a crescent shape, which can result in serious health problems.

Chapter 3

1 Figure 3.7 Plant cells have plasmodesmata, a cell wall, a large central vacuole, chloroplasts, and plastids. Animal cells have lysosomes and centrosomes. 3 Figure 3.22 No, it must have been hypotonic, as a hypotonic solution would cause water to enter the cells, thereby making them burst. 4C 6D 8 D 10 A 12 C 15 The advantages of light microscopes are that they are easily obtained, and the light beam does not kill the cells. However, typical light microscopes are somewhat limited in the amount of detail that they can reveal. Electron microscopes are ideal because you can view intricate details, but they are bulky and costly, and preparation for the microscopic examination kills the specimen. Transmission electron microscopes are designed to examine the internal structures of a cell, whereas a scanning electron microscope only allows visualization of the surface of a structure. 17 "Form follows function" refers to the idea that the function of a body part dictates the form of that body part. As an example, organisms like birds or fish that fly or swim quickly through the air or water have streamlined bodies that reduce drag. At the level of the cell, in tissues involved in secretory functions, such as the salivary glands, the cells have abundant Golgi. 19 Water moves through a semipermeable membrane in osmosis because there is a concentration gradient across the membrane of solute and solvent. The solute cannot effectively move to balance the concentration on both sides of the membrane, so water moves to achieve this balance.

Chapter 4

1 Figure 4.6 A compost pile decomposing is an exergonic process. A baby developing from a fertilized egg is an endergonic process. Tea dissolving into water is an exergonic process. A ball rolling downhill is an exergonic process. 3 Figure 4.16 The illness is caused by lactic acid build-up. Lactic acid levels rise after exercise, making the symptoms worse. Milk sickness is rare today, but was common in the Midwestern United States in the early 1800s. 4 D $\mathbf{6}$ C $\mathbf{8}$ D $\mathbf{1 0} \mathrm{C} 12 \mathrm{~B} \mathbf{1 4}$ Physical exercise involves both anabolic and catabolic processes. Body cells break down sugars to provide ATP to do the work necessary for exercise, such as muscle contractions. This is catabolism. Muscle cells also must repair muscle tissue damaged by exercise by building new muscle. This is anabolism. 16 Most vitamins and minerals act as cofactors and coenzymes for enzyme action. Many enzymes require the binding of certain cofactors or coenzymes to be able to catalyze their reactions. Since enzymes catalyze many important reactions, it is critical to obtain sufficient vitamins and minerals from diet and supplements. Vitamin C (ascorbic acid) is a coenzyme necessary for the action of enzymes that build collagen. 18 The oxygen we inhale is the final electron acceptor in the electron transport chain and allows aerobic respiration to proceed, which is the most efficient pathway for harvesting energy in the form of ATP from food molecules. The carbon dioxide we breathe out is formed during the citric acid cycle when the bonds in carbon compounds are broken. 20 They are very economical. The substrates, intermediates, and products move between pathways and do so in response to finely tuned feedback inhibition loops that keep metabolism overall on an even keel. Intermediates in one pathway may occur in another, and they can move from one pathway to another fluidly in response to the needs of the cell.

Chapter 5

1 Figure 5.7 Levels of carbon dioxide (a reactant) will fall, and levels of oxygen (a product) will rise. As a result, the rate of photosynthesis will slow down. 2 C 4 C 6 C 8 B 10 A 12 To convert solar energy into chemical energy that cells can use to do work. 14 The energy is present initially as light. A photon of light hits chlorophyll, causing an electron to be energized.

The free electron travels through the electron transport chain, and the energy of the electron is used to pump hydrogen ions into the thylakoid space, transferring the energy into the electrochemical gradient. The energy of the electrochemical gradient is used to power ATP synthase, and the energy is transferred into a bond in the ATP molecule. In addition, energy from another photon can be used to create a high-energy bond in the molecule NADPH. 16 Photosynthesis takes the energy of sunlight and combines water and carbon dioxide to produce sugar and oxygen as a waste product. The reactions of respiration take sugar and consume oxygen to break it down into carbon dioxide and water, releasing energy. Thus, the reactants of photosynthesis are the products of respiration, and vice versa.

Chapter 6

1 Figure 6.4 D. The kinetochore becomes attached to the mitotic spindle. Sister chromatids line up at the metaphase plate. The kinetochore breaks apart and the sister chromatids separate. The nucleus reforms and the cell divides. 2 C 4 B 6 A 8 C 10 C 12 Human somatic cells have 46 chromosomes, including 22 homologous pairs and one pair of nonhomologous sex chromosomes. This is the $2 n$, or diploid, condition. Human gametes have 23 chromosomes, one each of 23 unique chromosomes. This is the n, or haploid, condition. 14 If one of the genes that produce regulator proteins becomes mutated, it produces a malformed, possibly non-functional, cell-cycle regulator. This increases the chance that more mutations will be left unrepaired in the cell. Each subsequent generation of cells sustains more damage. The cell cycle can speed up as a result of loss of functional checkpoint proteins. The cells can lose the ability to self-destruct. $\mathbf{1 6}$ The common components of eukaryotic cell division and binary fission are DNA duplication, segregation of duplicated chromosomes, and the division of the cytoplasmic contents.

Chapter 7

1 Figure 7.2 Yes, it will be able to reproduce asexually. 2 C 4 B 6 D 8 B 10 D 12 The offspring of sexually reproducing organisms are all genetically unique. Because of this, sexually reproducing organisms may have more successful survival of offspring in environments that change than asexually reproducing organisms, whose offspring are all genetically identical. In addition, the rate of adaptation of sexually reproducing organisms is higher, because of their increased variation. This may allow sexually reproducing organisms to adapt more quickly to competitors and parasites, who are evolving new ways to exploit or outcompete them. 14 Random alignment leads to new combinations of traits. The chromosomes that were originally inherited by the gamete-producing individual came equally from the egg and the sperm. In metaphase I, the duplicated copies of these maternal and paternal homologous chromosomes line up across the center of the cell to form a tetrad. The orientation of each tetrad is random. There is an equal chance that the maternally derived chromosomes will be facing either pole. The same is true of the paternally derived chromosomes. The alignment should occur differently in almost every meiosis. As the homologous chromosomes are pulled apart in anaphase I, any combination of maternal and paternal chromosomes will move toward each pole. The gametes formed from these two groups of chromosomes will have a mixture of traits from the individual's parents. Each gamete is unique. 16 The problems caused by trisomies arise because the genes on the chromosome that is present in three copies produce more product than genes on chromosomes with only two copies. The cell does not have a way to adjust the amount of product, and the lack of balance causes problems in development and the maintenance of the individual. Each chromosome is different, and the differences in survivability could have to do with the numbers of genes on the two chromosomes. Chromosome 21 may be a smaller chromosome, so there are fewer unbalanced gene products. It is also possible that chromosome 21 carries genes whose products are less sensitive to differences in dosage than chromosome 18. The genes may be less involved in critical pathways, or the differences in dosage may make less of a difference to those pathways.

Chapter 8

$\mathbf{1}$ Figure 8.9 You cannot be sure if the plant is homozygous or heterozygous as the data set is too small: by random chance, all three plants might have acquired only the dominant gene even if the recessive one is present. 3 Figure 8.16 Half of the female offspring would be heterozygous ($\mathrm{X}^{W} \mathrm{X}^{w}$) with red eyes, and half would be homozygous recessive ($\mathrm{X}^{w} \mathrm{X}^{w}$) with white eyes. Half of the male offspring would be hemizygous dominant $\left(X^{W} \mathrm{Y}\right)$ with red eyes, and half would be hemizygous recessive $\left(\mathrm{X}^{w} \mathrm{Y}\right)$ with white eyes. 4 B 6 A 8 C 10 D 12 C 14 The garden pea has flowers that close tightly during self-pollination. This helps to prevent accidental or unintentional fertilizations that could have diminished the accuracy of Mendel's data. $\mathbf{1 6}$ The Punnett square will be 2×2 and will have T and t along the top and T and t along the left side. Clockwise from the top left, the genotypes listed within the boxes will be $T T, T t, T t$, and $t t$. The genotypic ratio will be $1 T T: 2 T t: 1 t t$. 18 Yes this child could have come from these parents. The child would have inherited an i allele from each parent and for this to happen the type A parent had to have genotype $I^{A} i$ and the type b parent had to have genotype $I^{B} i$.

Chapter 9

1 Figure 9.10 Ligase, as this enzyme joins together Okazaki fragments. 2 A 4 B 6 A 8 C 10 D 12 The DNA is wound around proteins called histones. The histones then stack together in a compact form that creates a fiber that is 30 -nm thick. The fiber is further coiled for greater compactness. During metaphase of mitosis, the chromosome is at its most compact to facilitate chromosome movement. During interphase, there are denser areas of chromatin, called heterochromatin, that contain DNA that is not expressed, and less dense euchromatin that contains DNA that is expressed. $\mathbf{1 4}$ Telomerase has an inbuilt RNA template
that extends the 3 ' end, so a primer is synthesized and extended. Thus, the ends are protected. $\mathbf{1 6}$ The cell controls which protein is expressed, and to what level that protein is expressed, in the cell. Prokaryotic cells alter the transcription rate to turn genes on or off. This method will increase or decrease protein levels in response to what is needed by the cell. Eukaryotic cells change the accessibility (epigenetic), transcription, or translation of a gene. This will alter the amount of RNA, and the lifespan of the RNA, to alter the amount of protein that exists. Eukaryotic cells also change the protein's translation to increase or decrease its overall levels. Eukaryotic organisms are much more complex and can manipulate protein levels by changing many stages in the process.

Chapter 10

1 Figure 10.7 Because even though the original cell came from a Scottish Blackface sheep and the surrogate mother was a Scottish Blackface, the DNA came from a Finn-Dorset. 2 B 4 A 6 C 8 D 10 The polymerase chain reaction is used to quickly produce many copies of a specific segment of DNA when only one or a very few copies are originally present. The benefit of PCR is that there are many instances in which we would like to know something about a sample of DNA when only very small amounts are available. PCR allows us to increase the number of DNA molecules so that other tests, such as sequencing, can be performed with it. 12 Genome mapping helps researchers to study disease-causing genes in humans. It also helps to identify traits of organisms that can be used in applications such as cleaning up pollution.

Chapter 11

1 Figure 11.7 Genetic drift is likely to occur more rapidly on an island, where smaller populations are expected to occur. 2 B 4 C 6 C 8 C 10 A 12 B 14 B 15 The plants that can best use the resources of the area, including competing with other individuals for those resources, will produce more seeds themselves and those traits that allowed them to better use the resources will increase in the population of the next generation. 17 The theory of natural selection stems from the observation that some individuals in a population survive longer and have more offspring than others, thus passing on more of their genes to the next generation. For example, a big, powerful male gorilla is much more likely than a smaller, weaker gorilla to become the population's silverback, the pack's leader who mates far more than the other males of the group. The pack leader will, therefore, father more offspring, who share half of his genes, and are thus likely to also grow bigger and stronger like their father. Over time, the genes for bigger size will increase in frequency in the population, and the population will, as a result, grow larger on average. $\mathbf{1 9}$ Organisms of one species can arrive to an island together and then disperse throughout the chain, each settling into different niches, exploiting different food resources and, evolving independently with little gene flow between different islands. 21 In science, a theory is a thoroughly tested and verified set of explanations for a body of observations of nature. It is the strongest form of knowledge in science. In contrast, a theory in common usage can mean a guess or speculation about something, meaning that the knowledge implied by the theory may be very weak.

Chapter 12

1 Figure 12.3 Cats and dogs are part of the same group at five levels: both are in the domain Eukarya, the kingdom Animalia, the phylum Chordata, the class Mammalia, and the order Carnivora. 3 C 5 D 7 B 9 A 11 B 13 The phylogenetic tree shows the order in which evolutionary events took place and in what order certain characteristics and organisms evolved in relation to others. It does not generally indicate time durations. 15 Dolphins are mammals and fish are not, which means that their evolutionary paths (phylogenies) are quite separate. Dolphins probably adapted to have a similar body plan after returning to an aquatic lifestyle, and therefore this trait is probably analogous. 17 The biologist looks at the state of the character in an outgroup, an organism that is outside the clade for which the phylogeny is being developed. The polarity of the character change is from the state of the character in the outgroup to the second state.

Chapter 13

1 Figure 13.6 A 2 B 4 D 6 C 8 D 10 C 12 C 14 Antibiotics kill bacteria that are sensitive to them; thus, only the resistant ones will survive. These resistant bacteria will reproduce, and therefore, after a while, there will be only resistant bacteria, making it more difficult to treat the diseases they may cause in humans. 16 Eukaryote cells arose through endosymbiotic events that gave rise to energy-producing organelles within the eukaryotic cells, such as mitochondria and plastids. The nuclear genome of eukaryotes is related most closely to the Archaea, so it may have been an early archaean that engulfed a bacterial cell that evolved into a mitochondrion. Mitochondria appear to have originated from an alpha-proteobacterium, whereas chloroplasts originated from a cyanobacterium. There is also evidence of secondary endosymbiotic events. Other cell components may have resulted from endosymbiotic events. 18 The trypanosomes that cause this disease are capable of expressing a glycoprotein coat with a different molecular structure with each generation. Because the immune system must respond to specific antigens to raise a meaningful defense, the changing nature of trypanosome antigens prevents the immune system from ever clearing this infection. Massive trypanosome infection eventually leads to host organ failure and death.

Chapter 14

1 Figure 14.19 B . The diploid zygote forms after the pollen tube has finished forming so that the male generative nucleus (sperm) can fuse with the female egg. 3 A 5 A 7 D 9 A 11 A 13 The sporangium of plants protects the spores from drying out. Apical
meristems ensure that a plant is able to grow in the two directions required to acquire water and nutrients: up toward sunlight and down into the soil. The multicellular embryo is an important adaptation that improves survival of the developing plant in dry environments. The development of molecules that gave plants structural strength allowed them to grow higher on land and obtain more sunlight. A waxy cuticle prevents water loss from aerial surfaces. 15 It became possible to transport water and nutrients through the plant and not be limited by rates of diffusion. Vascularization allowed the development of leaves, which increased efficiency of photosynthesis and provided more energy for plant growth. 17 The resemblance between cycads and palm trees is only superficial. Cycads are gymnosperms and do not bear flowers or fruit. Unlike palms, cycads produce cones; large, female cones that produce naked seeds, and smaller male cones on separate plants.

Chapter 15

1 Figure 15.3 B 3 Figure 15.33 A 4 B 6 D $\mathbf{8}$ B 10 A 12 B 14 C 16 C 18 A 20 Specialized tissues allow more efficient functioning because differentiated tissue types can perform unique functions and work together in tandem to allow the animal to perform more functions. For example, specialized muscle tissue allows directed and efficient movement, and specialized nervous tissue allows for multiple sensory modalities as well as the ability to respond to various sensory information; these functions are not necessarily available to other non-animal organisms. 22 The sponges draw water carrying food particles into the spongocoel using the beating of flagella in the choanocytes. The food particles are caught by the collar of the choanocyte and brought into the cell by phagocytosis. Digestion of the food particle takes place inside the cell. The difference between this and the mechanisms of other animals is that digestion takes place within cells rather than outside of cells. It means that the organism can feed only on particles smaller than the cells themselves. 24 In a complete digestive system, food material is not mixed with waste material, so the digestion and uptake of nutrients can be more efficient. In addition, the complete digestive system allows for an orderly progression of digestion of food matter and the specialization of different zones of the digestive tract. 26 Mollusks have a large muscular foot that may be modified in various ways, such as into tentacles, but it functions in locomotion. They have a mantle, a structure of tissue that covers and encloses the dorsal portion of the animal and secretes the shell when it is present. The mantle encloses the mantle cavity, which houses the gills (when present), excretory pores, anus, and gonadopores. The coelom of mollusks is restricted to the region around the systemic heart. The main body cavity is a hemocoel. Many mollusks have a radula near the mouth that is used for scraping food. 28 During embryonic development, we also have a notochord, a dorsal hollow nerve tube, pharyngeal slits, and a post-anal tail. 30 A moist environment is required as frog eggs lack a shell and dehydrate quickly in dry environments.

Chapter 16

1 Figure 16.2 Pyrogens increase body temperature by causing the blood vessels to constrict, inducing shivering, and stopping sweat glands from secreting fluid. 3 Figure 16.9 B 5 Figure 16.14 A 6 C 8 B 10 C 12 A 14 C 16 A 18 A 20 A 22 B 24 C 26 A 27 The body has a sensor that detects a deviation of the state of the cells or the body from the set point. The information is relayed to a control center, usually the brain, where signals go to effectors. Those effectors cause a negative feedback response that moves the state of the body in a direction back toward the set point. 29 Accessory organs play an important role in producing and delivering digestive juices to the intestine during digestion and absorption. Specifically, the salivary glands, liver, pancreas, and gallbladder play important roles. Malfunction of any of these organs can lead to disease states. 31 In the United States, obesity, particularly childhood obesity, is a growing concern. Some of the contributors to this situation include sedentary lifestyles and consuming more processed foods and less fruits and vegetables. As a result, even young children who are obese can face health concerns. 33 The sac-like structure of the alveoli increases their surface area. In addition, the alveoli are made of thin-walled cells. These features allows gases to easily diffuse across the cells. 35 The cells of both exocrine and endocrine glands produce a product that will be secreted by the gland. An exocrine gland has a duct and secretes its product to the outside of the gland, not into the bloodstream. An endocrine gland secretes its product into the bloodstream and does not use a duct. 37 Blood-glucose levels are regulated by hormones produced by the pancreas: insulin and glucagon. When blood-glucose levels are increasing, the pancreas releases insulin, which stimulates uptake of glucose by cells. When blood-glucose levels are decreasing, the pancreas releases glucagon, which stimulates the release of stored glucose by the liver to the bloodstream. 39 Neurons contain organelles common to all cells, such as a nucleus and mitochondria. They are unique because they contain dendrites, which can receive signals from other neurons, and axons that can send these signals to other cells. 41 The sympathetic nervous system prepares the body for "fight or flight," whereas the parasympathetic nervous system allows the body to "rest and digest." Sympathetic neurons release norepinephrine onto target organs; parasympathetic neurons release acetylcholine. Sympathetic neuron cell bodies are located in sympathetic ganglia. Parasympathetic neuron cell bodies are located in the brainstem and sacral spinal cord. Activation of the sympathetic nervous system increases heart rate and blood pressure and decreases digestion and blood flow to the skin. Activation of the parasympathetic nervous system decreases heart rate and blood pressure and increases digestion and blood flow to the skin.

Chapter 17

1 Figure 17.5 D 3 Figure 17.17 If the blood of the mother and fetus mixes, memory cells that recognize the Rh antigen of the fetus can form in the mother late in the first pregnancy. During subsequent pregnancies, these memory cells launch an immune attack on the fetal blood cells of an Rh-positive fetus. Injection of anti-Rh antibody during the first pregnancy prevents the immune response from occurring. 4 B 6 B 8 B 10 C 12 A 14 B 16 The virus cannot attach to dog cells because dog cells do not express the receptors for the virus or there is no cell within the dog that is permissive for viral replication. $\mathbf{1 8}$ If the MHC class

I molecules expressed on donor cells differ from the MHC class I molecules expressed on recipient cells, NK cells may identify the donor cells as not normal and produce enzymes to induce the donor cells to undergo apoptosis, which would destroy the transplanted organ. 20 T cells bind antigens that have been digested and embedded in MHC molecules by APCs. In contrast, B cells function as APCs to bind intact, unprocessed antigens. 22 This is probably a delayed sensitivity reaction to one or more chemicals in the developer. An initial exposure would have sensitized the individual to the chemical and then subsequent exposures will induce a delayed inflammation reaction a day or two after exposure.

Chapter 18

1 Figure 18.12 D 3 B 5 A 7 A 9 D 11 B 13 Temperatures can vary from year to year and an unusually cold or hot year might produce offspring all of one sex, making it hard for individuals to find mates. 15 If multiple sperm fused with one egg, a zygote with a multiple ploidy level (multiple copies of the chromosomes) would form, and then would die. 17 Low levels of progesterone allow the hypothalamus to send GnRH to the anterior pituitary and cause the release of FSH and LH. FSH stimulates follicles on the ovary to grow and prepare the eggs for ovulation. As the follicles increase in size, they begin to release estrogen and a low level of progesterone into the blood. The level of estrogen rises to a peak, causing a spike in the concentration of LH. This causes the most mature follicle to rupture and ovulation occurs.

Chapter 19

1 Figure 19.2 Smaller animals require less food and others resources, so the environment can support more of them per unit area. $\mathbf{3}$ Figure 19.11 Stage 4 represents a population that is decreasing. $\mathbf{4}$ C $\mathbf{6}$ A $\mathbf{8}$ C 10 A 12 C 14 B 16 C 18 The researcher would mark a certain number of penguins with a tag, release them back into the population, and, at a later time, recapture penguins to see what percentage was tagged. This percentage would allow an estimation of the size of the penguin population. 20 If a natural disaster such as a fire happened in the winter, when populations are low, it would have a greater effect on the overall population and its recovery than if the same disaster occurred during the summer, when population levels are high. 22 The competitive exclusion principles states that no two species competing for the same resources at the same time and place can coexist over time. Thus, one of the competing species will eventually dominate. On the other hand, if the species evolve such that they use resources from different parts of the habitat or at different times of day, the two species can exist together indefinitely.

Chapter 20

1 Figure 20.12 C: Nitrification by bacteria converts nitrates $\left(\mathrm{NO}_{3}{ }^{-}\right)$to nitrites $\left(\mathrm{NO}_{3}^{-}\right)$. 3B $5 \mathrm{~B} \quad 7 \mathrm{~B} \quad \mathbf{9}$ C 11 D 13 Grazing food webs have a producer at their base, which is either a plant for terrestrial ecosystems or a phytoplankton for aquatic ecosystems. The producers pass their energy to the various trophic levels of consumers. At the base of detrital food webs are the decomposers, which pass their energy to a variety of other consumers. Detrital food webs are important for the health of many grazing food webs because they eliminate dead and decaying organic material, thus clearing space for new organisms and removing potential causes of disease. 15 Fire is less common in desert biomes than in temperate grasslands because deserts have low net primary productivity, thus very little plant biomass to fuel a fire. 17 Organisms living in the intertidal zone must tolerate periodic exposure to air and sunlight and must be able to be periodically dry. They also must be able to endure the pounding waves; for this reason, some shoreline organisms have hard exoskeletons that provide protection while also reducing the likelihood of drying out.

Chapter 21

$\mathbf{1}$ Figure 21.6 The ground is permanently frozen so the seeds will keep, even if the electricity fails. $\mathbf{2}$ C $\mathbf{4}$ C $\mathbf{6 C} \mathbf{8 C 1 0}$ Crop plants are derived from wild plants, and genes from wild relatives are frequently brought into crop varieties by plant breeders to add valued characteristics to the crops. If the wild species are lost, then this genetic variation would no longer be available. 12 Human population growth leads to unsustainable resource use, which causes habitat destruction to build new human settlements, create agricultural fields, and so on. Larger human populations have also led to unsustainable fishing and hunting of wild animal populations. Excessive use of fossil fuels also leads to global warming. $\mathbf{1 4}$ Larger preserves will contain more species. Preserves should have a buffer around them to protect species from edge effects. Preserves that are round or square are better than preserves with many thin arms.

INDEX

A

absorption spectrum, 124, 132
abyssal zone, 556, 563
acellular, 450, 472
acetyl CoA, 104, 113
acid, 51
Acid rain, 547
acid rain, 563
Acids, 38
acoelomate, 395
acoelomates, 360
Actinopterygii, 387, 395
action potential, 432, 440
activation energy, 97, 113
active immunity, 461, 472
active site, 98, 113
Active transport, 81
active transport, 85
adaptation, 253, 270
Adaptive immunity, 460
adaptive immunity, 472
adaptive radiation, 264, 270
adhesion, 37, 51
adrenal gland, 440
adrenal glands, 423
Age structure, 512
age structure, 525
algal bloom, 560, 563
allele, 194
alleles, 178
allergy, 469, 472
Allopatric speciation, 262
allopatric speciation, 270
allosteric inhibition, 100, 113
alternation of generations, 155, 170
alternative RNA splicing, 219, 220
alveoli, 415
alveolus, 440
amino acid, 51
Amino acids, 46
amniote, 395
amniotes, 389
amoebocyte, 395
Amoebocytes, 362
Amoebozoa, 306, 319
Amphibia, 388, 395
ampulla of Lorenzini, 395
ampullae of Lorenzini, 387
amygdala, 437, 440
amylase, 409, 440
anabolic, 93, 113
anaerobic, 292, 319
anaerobic cellular respiration, 113
analogous structure, 270, 283, 288
analogous structures, 253
anaphase, 140, 149
aneuploid, 165, 170
anion, 51
anions, 31
anneal, 245
annealing, 229
Annelida, 378, 395
anoxic, 292, 319
anther, 344, 351
Anthophyta, 347, 351
Anthropoids, 393
anthropoids, 395
antibody, 461, 472
antigen, 460, 472
antigen-presenting cell (APC),
462, 472
Anura, 388, 395
anus, 411, 440
aorta, 417, 440
apex consumer, 563
apex consumers, 531
aphotic zone, 555, 563
apical meristem, 329, 351
Apoda, 388, 395
apoptosis, 453, 472
appendicular skeleton, 428, 440
applied science, 22, 24
Archaeplastida, 306, 319
Arctic tundra, 553
arctic tundra, 563
Arteries, 419
artery, 440
Arthropoda, 371, 395
Ascomycota, 314, 319
Asexual reproduction, 478
asexual reproduction, 495
Asymmetrical, 358
asymmetrical, 395
atom, 9, 24
atomic number, 28, 51
ATP, 102, 113
ATP synthase, 107, 113
atrium, 417, 440
attenuation, 455, 472
auditory ossicles, 427, 440
autoantibody, 470, 472
Autoimmunity, 470
autoimmunity, 472
autonomic nervous system, 437, 440
autosome, 170
autosomes, 165
autotroph, 118, 132, 563
autotrophs, 535
axial skeleton, 426, 440
axon, 433, 440

B

B cell, 472
B cells, 460
Basal angiosperms, 348
basal angiosperms, 351
basal ganglia, 436, 440
base, 51
bases, 38
Basic science, 22
basic science, 24
Basidiomycota, 314
basidiomycota, 319
benthic realm, 555, 563
bicuspid valve, 417, 440
Bilateral symmetry, 359
bilateral symmetry, 395
Bile, 410
bile, 440
binary fission, 145, 149
binomial nomenclature, 276,
288
biodiversity, 568, 590
biodiversity hotspot, 586, 590
bioenergetics, 92, 113
biofilm, 294, 319
biogeochemical cycle, 537, 563
Biology, 5
biology, 24
Biomagnification, 536
biomagnification, 563
biomarker, 243, 245
biome, 531, 563
bioremediation, 301, 319
biosphere, 12, 24
Biotechnology, 225
biotechnology, 245
birth rate, 505, 525
Black Death, 297, 319
blastocyst, 483, 495
body plan, 356, 395
bolus, 409, 440
bones, 391
boreal forest, 552, 563
bottleneck effect, 256, 270
botulism, 299, 319
brachiation, 393, 395
brainstem, 437, 440
branch point, 279, 288
bronchi, 415, 440
bronchiole, 440
bronchioles, 415
budding, 363, 395, 495
Budding, 479
buffer, 51
Buffers, 38
bulbourethral gland, 486, 495
Bush meat, 578
bush meat, 590

C

caecilian, 395
Caecilians, 389
Calvin cycle, 127, 132
calyx, 344, 351
canopy, 548, 563
capillaries, 419
capillary, 440
capsid, 451, 472
capsule, 295, 319
carbohydrate, 51
Carbohydrates, 40
carbon fixation, 127, 132
cardiac cycle, 418, 440
Cardiac muscle tissue, 430
cardiac muscle tissue, 440
carpel, 344, 351
carrying capacity, 505, 525
cartilaginous joint, 440
Cartilaginous joints, 428
catabolic, 93, 113
cation, 51
cations, 31
cell, 10, 24
cell cycle, 137, 149
cell cycle checkpoints, 142, 149
cell plate, 140, 149
cell wall, 69, 85
cell-mediated immune
response, 460, 472
Cellulose, 41
cellulose, 51
central nervous system (CNS),
435, 440
central vacuole, 70, 85
centriole, 149
centrioles, 138
Cephalochordata, 383, 395
cephalothorax, 373, 395
cerebellum, 437, 441
cerebral cortex, 435, 441
cerebrospinal fluid (CSF), 435,
441
chaeta, 395
chaetae, 379
channel, 561, 563
chaparral, 550, 563
chelicerae, 373, 395
chemical bond, 51
chemical bonds, 31
chemical diversity, 569, 590
chemiosmosis, 107, 113
chemoautotroph, 563
chemoautotrophs, 535
chiasmata, 158, 170
chitin, 41, 51, 370, 395
chlorophyll, 120, 132
chlorophyll a, 124, 132
chlorophyll $b, 124,132$
chloroplast, 85, 120, 132
Chloroplasts, 69
choanocyte, 362, 395
Chondrichthyes, 386, 395
Chordata, 382, 395
Chromalveolata, 306, 319
chromosome inversion, 168, 170
chyme, 410, 441
chytridiomycosis, 580, 590
Chytridiomycota, 314, 319
cilia, 64
cilium, 85
citric acid cycle, 105, 113
clade, 288
clades, 285
cladistics, 285, 288
class, 276, 288
cleavage furrow, 140, 149
climax community, 524, 525
clitellum, 380, 395
clitoris, 487, 495
cloning, 228, 245
closed circulatory system, 417,
441
club moss, 351
club mosses, 335
Cnidaria, 363, 395
cnidocyte, 395
cnidocytes, 363
codominance, 186, 194
codon, 214, 220
coelom, 360, 395
cohesion, 36, 51
colon, 411, 441
commensalism, 302, 319
community, 12, 24
competitive exclusion principle, 518, 525
competitive inhibition, 99, 113
complement system, 459, 472
complete digestive system, 370 , 396
concentration gradient, 77, 85
cone, 351
cones, 339
conifer, 351
Conifers, 341
conjugation, 296, 319
Continuous variation, 174
continuous variation, 194
control, 20, 24
convergent evolution, 253, 270
coral reef, 563
Coral reefs, 557
corolla, 344, 351
corpus callosum, 435, 441
corpus luteum, 487, 495
cotyledon, 351
cotyledons, 347
covalent bond, 32, 51
craniate, 396
craniates, 385
Crocodilia, 390, 396
crossing over, 158, 170
cryptofauna, 558, 563
ctenidia, 375, 396
cutaneous respiration, 388, 396
cyanobacteria, 292, 319
cycad, 351
Cycads, 341
cytokine, 457, 472
Cytokinesis, 140
cytokinesis, 149
cytopathic, 453, 472
cytoplasm, 63, 85
cytoskeleton, 63, 85
cytosol, 63, 85
cytotoxic T lymphocyte (T_{C}),
472

D

dead zone, 544, 563
death rate, 505, 525
Deductive reasoning, 19
deductive reasoning, 24
demography, 500, 525
denaturation, 46, 51
dendrite, 441
Dendrites, 432
dendritic cell, 462, 472
density-dependent, 508
density-dependent regulation,
525
density-independent, 508
density-independent regulation, 525
deoxyribonucleic acid (DNA), 49, 51
deoxyribose, 200, 220
depolarization, 432, 441
Descriptive, 19
descriptive science, 24
desmosome, 85
desmosomes, 72
detrital food web, 534, 563
Deuteromycota, 319
deuterostome, 396
Deuterostomes, 360
diaphragm, 415, 441
diastole, 418, 441
dicot, 351
dicots, 348
Diffusion, 77
diffusion, 85
dihybrid, 183, 194
dioecious, 371, 396
diphyodont, 396
diphyodonts, 392
diploblast, 396
diploblasts, 359
diploid, 136, 149
diploid-dominant, 155, 170
Diplontic, 327
diplontic, 351
disaccharide, 51
Disaccharides, 41
discontinuous variation, 174, 194
dispersal, 263, 270
divergent evolution, 253, 270
DNA ligase, 205, 220
DNA polymerase, 205, 220
domain, 288
domains, 276
Dominant, 177
dominant, 194
dorsal hollow nerve cord, 382, 396
double helix, 201, 220
down feather, 396
down feathers, 391
down-regulation, 422, 441

E

Echinodermata, 380, 396
ecosystem, 12, 24, 530, 563
ecosystem diversity, 569, 590
ecosystem services, 560,563
ectotherm, 441
ectotherms, 404
effector cell, 472
effector cells, 464
electrocardiogram (ECG), 419, 441
electrochemical gradient, 81, 85
electromagnetic spectrum, 123, 132
electron, 28, 51
electron transfer, 31, 51
electron transport chain, 105,
113
element, 51
elements, 28
Emergent vegetation, 562
emergent vegetation, 563
Endemic species, 571
endemic species, 590
endergonic, 113
endergonic reactions, 96
endocrine gland, 441
endocrine glands, 421
Endocytosis, 82
endocytosis, 85
endomembrane system, 64, 85
endoplasmic reticulum (ER), 65, 85
endosymbiosis, 319
endosymbiotic theory, 303
endotherm, 404, 441
environmental disturbance, 525
environmental disturbances,
523
enzyme, 51, 113
Enzymes, 45
enzymes, 97
epidemic, 319
epidemics, 297
epidermis, 364, 396
epigenetic, 216, 220
epistasis, 192, 194
Equilibrium, 531
equilibrium, 563
esophagus, 408, 441
essential nutrient, 441
essential nutrients, 413
estrogen, 491, 495
Estuaries, 559
estuary, 563
eucoelomate, 396
eucoelomates, 360
eudicots, 347, 351
eukaryote, 24
eukaryotes, 10
eukaryotic cell, 60, 85
euploid, 165, 170
eutherian mammal, 396
Eutherian mammals, 393
eutrophication, 542, 564
evaporation, 35, 51
evolution, 12, 24
Excavata, 306, 319
exergonic, 113
exergonic reactions, 96
exocrine gland, 441
Exocrine glands, 421
Exocytosis, 83
exocytosis, 85
exon, 220
exons, 212
Exotic species, 579
exotic species, 590
exponential growth, 504, 525
external fertilization, 481, 495
extinction, 570, 590
extinction rate, 590
extinction rates, 584
extracellular digestion, 365, 396
extracellular matrix, 70, 85
extremophile, 319
extremophiles, 294

F

$F_{1}, 175,194$
$F_{2}, 175,194$
facilitated transport, 78, 85
fallout, 546, 564
falsifiable, 20, 24
family, 276, 288
fat, 43, 51
Feedback inhibition, 102
feedback inhibition, 113
fermentation, 108, 113
fern, 351
ferns, 336
fertilization, 157, 170
fibrous joint, 441
fibrous joints, 428
filament, 344, 351
Fission, 478
fission, 495
Flagella, 64
flagellum, 85
fluid mosaic model, 74, 85
follicle stimulating hormone
(FSH), 490, 495
food chain, 531, 564
food web, 533, 564
foodborne disease, 299, 319
Foundation species, 521
foundation species, 525
founder effect, 257, 270
fragmentation, 363, 396, 495
Fragmentation, 479
frog, 396
Frogs, 389
frontal lobe, 436, 441
FtsZ, 147, 149

G

Go phase, 141, 149
G_{1} phase, 137, 149
G2 phase, 138, 149
gallbladder, 411, 441
gametangia, 327
gametangium, 351
gamete, 149
gametes, 136
gametophyte, 170, 327, 351
gametophytes, 157
gap junction, 85
Gap junctions, 72
gastrodermis, 364, 396
gastrovascular cavity, 365, 396
gastrulation, 484, 495
Gel electrophoresis, 226
gel electrophoresis, 245
gemmule, 396
gemmules, 363
gene, 149
gene expression, 216, 220
gene flow, 257, 270
gene pool, 254, 270
Gene therapy, 233
gene therapy, 245
genes, 136
genetic code, 214, 220
Genetic diversity, 569
genetic diversity, 590
genetic drift, 255, 270
genetic engineering, 232, 245
genetic map, 236, 245
genetic testing, 245
genetically modified organism, 232
genetically modified organism
(GMO), 245
genome, 136, 149
genomics, 236, 245
genotype, 178, 194
genus, 276, 288
germ cell, 170
germ cells, 155
germ layer, 396
germ layers, 359
gestation, 493, 495
gestation period, 493, 495
gingkophyte, 351
ginkgophyte, 342
glia, 432, 441
Glomeromycota, 314, 319
Glycogen, 41
glycogen, 51
Glycolysis, 103
glycolysis, 113
glycoprotein, 451, 472
gnathostome, 396
Gnathostomes, 386
gnetophyte, 351
Gnetophytes, 342
Golgi apparatus, 66, 86
gonadotropin-releasing
hormone (GnRH), 490, 495
Gram-negative, 295, 319
Gram-positive, 295, 319
granum, 121, 132
grazing food web, 534, 564
gross primary productivity, 535, 564
gymnosperm, 351
Gymnosperms, 339
gynoecium, 344, 351

H

habitat heterogeneity, 572, 590
hagfish, 396
Hagfishes, 385
haplodiplontic, 327, 351
haploid, 136, 149
haploid-dominant, 155, 170
Haplontic, 327
haplontic, 351
heat energy, 94, 113
helicase, 205, 220
helper T lymphocyte (TH_{H}, 472
hemizygous, 189, 194
hemocoel, 371, 396
herbaceous, 349, 351
Hermaphroditism, 480
hermaphroditism, 495
heterodont teeth, 392, 396
heterosporous, 327, 351
heterotroph, 132
Heterotrophs, 118
heterozygous, 179, 194
hippocampus, 436, 441
homeostasis, 8, 24
homologous chromosomes, 136, 149
homologous structure, 270
homologous structures, 253
homosporous, 327, 351
homozygous, 178, 194
hormone, 51, 441
hormone receptors, 421
Hormones, 45, 421
hornwort, 351
hornworts, 333
horsetail, 351
Horsetails, 335
host, 519, 525
human beta chorionic
gonadotropin (β-HCG), 493, 495
humoral immune response, 460,
472
hybridization, 194
hybridizations, 175
hydrogen bond, 33, 51
hydrophilic, 34, 52
hydrophobic, 34, 52
hydrosphere, 537, 564
hydrothermal vent, 293, 319
hyoid bone, 427, 441
hypersensitivity, 469, 472
hypertonic, 79, 86
hypha, 312, 319
hypothalamus, 437, 441
hypothesis, 18, 24
hypothesis-based science, 19, 24
hypotonic, 79, 86

I

immune tolerance, 468, 473
Immunodeficiency, 469
immunodeficiency, 473
incomplete dominance, 186, 194
Inductive reasoning, 18
inductive reasoning, 24
inferior vena cava, 417, 441
inflammation, 457, 473
inheritance of acquired
characteristics, 250, 270
inhibin, 491, 495
Innate immunity, 456
innate immunity, 473
inner cell mass, 483, 495
interferon, 457, 473
interkinesis, 161, 170
internal fertilization, 481, 495
interphase, 137, 149
interstitial cell of Leydig, 495
interstitial cells of Leydig, 485
interstitial fluid, 406, 441
intertidal zone, 555, 564
intracellular, 421
intracellular digestion, 362, 396
intracellular hormone receptor, 441
intraspecific competition, 506, 525
intron, 220
introns, 212
ion, 31, 52
ionic bond, 32, 52
Island biogeography, 521
island biogeography, 525
isotonic, 80,86
isotope, 52
Isotopes, 29

J

J-shaped growth curve, 505,
525
joint, 428, 442

K

K-selected species, 510, 525
karyogram, 164, 170
karyotype, 164, 170
keystone species, 522, 525
kidney, 442
kidneys, 406
kinetic energy, 95, 113
kinetochore, 140, 149
kingdom, 276, 288

L

labia majora, 487, 495
labia minora, 487, 495
lagging strand, 205, 220
lamprey, 396
Lampreys, 386
lancelet, 396
Lancelets, 384
large intestine, 411, 442
larynx, 415, 442
lateral, 387
lateral line, 397
law of dominance, 179, 194
law of independent assortment, 183, 194
law of segregation, 181, 194
leading strand, 205, 220
lichen, 319
Lichens, 317
life cycle, 170
life cycles, 154
life science, 24
life sciences, 18
life table, 525
life tables, 500
light-dependent reaction, 132
light-dependent reactions, 121
limbic system, 437, 442
line, 387
linkage, 191, 194
Lipids, 42
lipids, 52
litmus, 37
litmus paper, 52
liver, 411, 442
liverwort, 352
Liverworts, 333
locus, 136, 149
logistic growth, 505, 525
Lophotrochozoa, 374, 397
luteinizing hormone (LH), 490, 495
Lymph, 466
lymph, 473
lymphocyte, 458, 473
lysosome, 86
lysosomes, 66

M

macroevolution, 254, 270
macromolecule, 24, 52
macromolecules, 9, 39
macrophage, 457, 473
madreporite, 381, 397
major histocompatibility class
(MHC) I, 473
major histocompatibility class
(MHC) I molecules, 458
major histocompatibility class
(MHC) II molecule, 473
mammal, 397
Mammals, 392
mammary gland, 397
Mammary glands, 392
mantle, 375, 397
mark and recapture, 501, 525
marsupial, 397
Marsupials, 392
mass number, 28, 52
mast cell, 473
Mast cells, 457
Matter, 28
matter, 52
maximum parsimony, 287, 288
medusa, 364, 397
megasporocyte, 339, 352
meiosis, 154, 170
meiosis I, 157, 170
Meiosis II, 157
meiosis II, 170
membrane potential, 442
memory cell, 464, 473
meninges, 435, 442
menstrual cycle, 491, 495
mesoglea, 364, 397
mesohyl, 362, 397
mesophyll, 120, 132
metabolism, 92, 114
Metagenomics, 240
metagenomics, 245
metamerism, 379, 397
metaphase, 140, 149
metaphase plate, 140, 149
MHC class II molecule, 461
microbial mat, 293, 320
microevolution, 254, 270
microscope, 56, 86
microsporocyte, 352
microsporocytes, 339
migration, 255, 270
mimicry, 516, 525
mineral, 442
Minerals, 413
mismatch repair, 208, 220
Mitochondria, 68
mitochondria, 86
mitosis, 138, 149
mitotic, 137, 138
mitotic phase, 149
mitotic spindle, 149
model organism, 245
model organisms, 238
model system, 174, 194
modern synthesis, 254, 270
mold, 320
molds, 313
molecular systematics, 284, 288
molecule, 9, 24
Mollusca, 374, 397
monocot, 352
monocots, 347
monocyte, 457, 473
monoecious, 363, 397
monohybrid, 180, 194
monophyletic group, 285, 288
monosaccharide, 52
Monosaccharides, 40
monosomy, 165, 170
monotreme, 397
monotremes, 392
mortality rate, 502, 525
moss, 352
mosses, 334
mRNA, 210, 220
MRSA, 320
mutation, 209, 220
mutualism, 519, 525
mycelium, 312, 320
Mycorrhiza, 316
mycorrhiza, 320
mycoses, 315
mycosis, 320
myelin sheath, 433, 442
myofibril, 442
myofibrils, 430
myofilament, 442
myofilaments, 431
Myxini, 385, 397

N

nacre, 376, 397
nasal cavity, 415, 442
natural killer (NK) cell, 458, 473
natural science, 24
natural sciences, 18
Natural selection, 251
natural selection, 270
nematocyst, 397
nematocysts, 363
Nematoda, 370, 397
nephron, 442
nephrons, 407
neritic zone, 556, 564
Net primary productivity, 535
net primary productivity, 564
neuron, 442
neurons, 432
neutron, 52
Neutrons, 28
neutrophil, 458, 473
nitrogenous base, 200, 220
non-renewable resource, 541,
564
noncompetitive inhibition, 100, 114
nondisjunction, 164, 170
nonpolar covalent bond, 52
Nonpolar covalent bonds, 32
nontemplate strand, 211, 220
nonvascular plant, 352
nonvascular plants, 331
notochord, 382, 397
nuclear envelope, 65, 86
nucleic acid, 52
nucleic acids, 49
nucleolus, 65, 86
nucleotide, 52
nucleotide excision repair, 208, 220
nucleotides, 49
nucleus, 28, 52, 65, 86

0

occipital lobe, 436, 442
oceanic zone, 556, 564
octet rule, 31, 52
oil, 52
oils, 44
Okazaki fragments, 205, 220
oncogene, 150
oncogenes, 143
one-child policy, 513, 525
oogenesis, 488, 495
open circulatory system, 442
Open circulatory systems, 417
Opisthokonta, 306, 320
oral cavity, 409, 442
order, 276, 288
organ, 24
organ system, 10, 24
organelle, 24, 86
organelles, 10, 60
organism, 24
Organisms, 10
organogenesis, 484, 496
Organs, 10
origin, 145, 150
osculum, 362, 397
osmolarity, 79, 86
Osmoregulation, 406
osmoregulation, 442
Osmosis, 79
osmosis, 86
osmotic balance, 406, 442
Osteichthyes, 387, 397
ostracoderm, 397
ostracoderms, 385
ovarian cycle, 491, 496
ovary, 344, 352
oviduct, 496
oviducts, 487
oviparity, 482, 496
ovoviparity, 482, 496
ovulation, 492, 496
oxidative phosphorylation, 105, 114

P

P, 175, 194
pancreas, 411, 423, 442
pandemic, 320
pandemics, 297
paper, 37
parasite, 320, 519, 525
parasites, 305
parasympathetic nervous
system, 439, 442
parathyroid gland, 442
parathyroid glands, 423
parietal lobe, 436, 442
Parthenogenesis, 480
parthenogenesis, 496
passive immune, 461
passive immunity, 473
Passive transport, 77
passive transport, 86
pathogen, 296, 320
pectoral girdle, 428, 442
peer-reviewed article, 24
Peer-reviewed articles, 23
pelagic realm, 555, 564
pellicle, 320
pellicles, 305
pelvic girdle, 428, 442
penis, 485, 496
pepsin, 410, 442
peptidoglycan, 295, 320
periodic table of elements, 29 , 52
peripheral nervous system
(PNS), 437, 442
peristalsis, 408, 442
permafrost, 553, 564
peroxisome, 86
Peroxisomes, 68
petal, 352
Petals, 344
Petromyzontidae, 386, 397
pH scale, 37, 52
Phagocytosis, 83
phagocytosis, 86
Pharmacogenomics, 240
pharmacogenomics, 245
pharyngeal slit, 397
Pharyngeal slits, 382
pharynx, 415, 442
phase, 137
phenotype, 178, 194
phloem, 334, 352
phosphate group, 200, 220
phospholipid, 52
Phospholipids, 45
photic zone, 555, 564
photoautotroph, 132, 564
photoautotrophs, 118, 535
photon, 124, 132
photosystem, 124, 132
phototroph, 320
phototrophs, 292
phylogenetic tree, 14, 24, 279, 288
phylogeny, 276, 288
phylum, 276, 288
physical map, 245
Physical maps, 236
physical science, 24
physical sciences, 18
pigment, 120, 132
pinocytosis, 83, 86
pioneer species, 524, 526
pistil, 344, 352
pituitary gland, 422, 443
placenta, 493, 496
planktivore, 564
planktivores, 558
plasma membrane, 63, 86
plasmid, 228, 245
plasmodesma, 86
Plasmodesmata, 71
plastid, 303, 320
pneumatic, 391
pneumatic bone, 397
polar covalent bond, 32, 52
Polymerase chain reaction
(PCR), 227
polymerase chain reaction
(PCR), 245
polyp, 364, 397
polypeptide, 46, 52
polyploid, 167, 170
polysaccharide, 41, 52
population, 12, 24
population density, 500, 526
population genetics, 254, 270
population size, 500, 526
Porifera, 361, 397
post-anal tail, 383, 397
post-transcriptional, 217, 220
post-translational, 217, 220
potential energy, 95, 114
primary bronchi, 415
primary bronchus, 443
primary consumer, 564
primary consumers, 531
primary immune response, 464,
473
primary succession, 523, 526
Primates, 393, 397
primer, 205, 221
producer, 564
producers, 531
progesterone, 491, 496
prokaryote, 24
Prokaryotes, 10
prokaryotic cell, 59, 86
prometaphase, 139, 150
promoter, 210, 221
prophase, 139, 150
Prosimians, 393
prosimians, 398
prostate gland, 486, 496
protein, 52
protein signature, 243, 245
Proteins, 45
proteomics, 243, 245
proto-oncogene, 150
proto-oncogenes, 143
proton, 28, 52
protostome, 398
Protostomes, 360
pseudocoelomate, 398
pseudocoelomates, 360
pseudopeptidoglycan, 296, 320
pulmonary circulation, 417, 443
Punnett square, 180, 194

Q

quadrat, 501, 526
quiescent, 150

R

r-selected species, 510, 526
radial symmetry, 358, 398
radioactive isotope, 52
radioactive isotopes, 29
radula, 374, 398
receptor-mediated endocytosis, 83, 86
Recessive, 177
recessive, 195
reciprocal cross, 177, 195
recombinant, 158, 170
recombinant DNA, 230, 245
recombinant protein, 245
recombinant proteins, 230
recombination, 191, 195
rectum, 411, 443
reduction division, 162, 170
Relative species abundance,
521
relative species abundance, 526
renal artery, 407, 443
renal vein, 407, 443
replication fork, 221
replication forks, 205
Reproductive cloning, 230
reproductive cloning, 245
resilience, 531
resilience (ecological), 564
resistance, 531
resistance (ecological), 564
restriction enzyme, 245
restriction enzymes, 229
reverse genetics, 232, 245
Rhizaria, 306, 320
ribonucleic acid (RNA), 49, 52
ribosome, 86
Ribosomes, 68
RNA polymerase, 211, 221
rooted, 279, 288
rough endoplasmic reticulum
(RER), 65, 86
rRNA, 213, 221

S

S phase, 138, 150
S-shaped curve, 505
S-shaped growth curve, 526
salamander, 398
salamanders, 388
salivary gland, 443
salivary glands, 409
saprobe, 320
saprobes, 310
sarcolemma, 430, 443
sarcomere, 431, 443
Sarcopterygii, 387, 398
saturated fatty acid, 52
Saturated fatty acids, 44
savanna, 564
Savannas, 549
Science, 17
science, 19, 25
scientific law, 25
scientific laws, 18
scientific method, 18, 25
scientific theory, 18, 25
scrotum, 485, 496
sebaceous gland, 398
Sebaceous glands, 392
secondary consumer, 564
Secondary consumers, 531
secondary immune response, 465, 473
secondary plant compound, 590
secondary plant compounds,
572
secondary succession, 523, 526
selectively permeable, 77, 86
Semen, 485
semen, 496
semiconservative replication,
205, 221
seminal vesicle, 496
seminal vesicles, 486
seminiferous tubule, 496
seminiferous tubules, 485
sensory-somatic nervous
system, 437, 443
sepal, 352
sepals, 344
septum, 145, 150, 313, 320
Sertoli cell, 496
Sertoli cells, 485
set point, 404, 443
sex determination, 481, 496
sexual reproduction, 478, 496
shared ancestral character, 286, 288
shared derived character, 286, 288
sister taxa, 279, 288
Skeletal muscle tissue, 430
skeletal muscle tissue, 443
skull, 427, 443
small intestine, 410, 443
smooth endoplasmic reticulum
(SER), 66, 86
Smooth muscle tissue, 430
smooth muscle tissue, 443
solute, 79, 86
solvent, 36,53
somatic cell, 157, 170
source water, 561, 564
speciation, 262, 270
species, 276, 288
species distribution pattern, 501, 526
Species richness, 520
species richness, 526
species-area relationship, 584,
590
spermatogenesis, 488, 496
Sphenodontia, 391, 398
spicule, 398
spicules, 362
spinal cord, 443
spindle, 138
spiracle, 398
spiracles, 371
splicing, 212, 221
spongocoel, 362, 398
sporangia, 327
sporangium, 352
sporophyll, 352
sporophylls, 335
sporophyte, 157, 170, 327, 352
Squamata, 391, 398
stamen, 352
stamens, 344

Starch, 41
starch, 53
start codon, 214, 221
stereoscopic vision, 393, 398
steroid, 53
steroids, 45
stigma, 344, 352
stoma, 132
stomach, 410, 443
stomata, 120
stop codon, 221
stop codons, 214
Strobili, 335
strobili, 352
stroma, 121, 132
stromatolite, 293, 320
style, 344, 352
subduction, 541, 564
substrate, 114
substrates, 98
subtropical desert, 564
Subtropical deserts, 549
sudoriferous gland, 398
Sudoriferous glands, 392
superior vena cava, 417, 443
surface tension, 36, 53
survivorship curve, 503, 526
swim bladder, 387, 398
sympathetic nervous system, 438, 443
Sympatric speciation, 262
sympatric speciation, 270
synapse, 443
synapses, 432
synapsis, 158, 170
synaptic cleft, 435, 443
syngamy, 327, 352
Synovial joints, 428
synovial joints, 443
systematics, 276, 288
systemic circulation, 417, 443
systole, 418, 443

T

T cell, 473
T cells, 460
tadpole, 389, 398
taxon, 276, 288
Taxonomy, 276
taxonomy, 288
telomerase, 206, 221
telomere, 221
telomeres, 206
telophase, 140, 150
temperate forest, 564

Temperate forests, 552
temperate grassland, 565
Temperate grasslands, 551
Temperature, 35
temperature, 53
template strand, 211, 221
temporal lobe, 436, 443
tertiary consumer, 565
Tertiary consumers, 531
test cross, 181, 195
testes, 485, 496
Testosterone, 490
testosterone, 496
Testudines, 391, 398
tetrad, 171
tetrads, 158
Tetrapod, 383
tetrapod, 398
thalamus, 437, 443
thallus, 312, 320
Thermodynamics, 93
thermodynamics, 114
thoracic cage, 428, 444
threshold of excitation, 432, 444
thylakoid, 132
thylakoids, 120
thymus, 424, 444
thyroid gland, 423, 444
tight junction, 72, 87
tissue, 25
tissues, 10
Tonicity, 79
tonicity, 87
trachea, 398, 415, 444
tracheae, 371
tragedy of the commons, 578,
590
trait, 176, 195
trans-fat, 44, 53
transcription bubble, 210, 221
transduction, 296, 320
transformation, 296, 320
transgenic, 232, 245
Transgenic, 235
translocation, 171
translocations, 164
tricuspid valve, 417, 444
triglyceride, 53
triglycerides, 43
triploblast, 398
triploblasts, 359
trisomy, 165, 171
tRNA, 221
tRNAs, 213
trophic level, 531, 565
trophoblast, 483, 496
tropical rainforest, 565
Tropical rainforests, 548
tumor suppressor gene, 150
Tumor suppressor genes, 144
tunicate, 398
tunicates, 383

U

unified cell theory, 59, 87
unsaturated fatty acid, 44, 53
up-regulation, 422, 444
ureter, 407, 444
urethra, 407, 444
urinary bladder, 407, 444
Urochordata, 383, 398
Urodela, 388, 398
uterus, 487, 496

V

vaccine, 455, 473
vacuole, 87
vacuoles, 67
vagina, 487, 496
van der Waals interaction, 53
van der Waals interactions, 33
variable, 20, 25
variation, 252, 270
vascular plant, 352
Vascular plants, 331
vein, 444
Veins, 420
ventricle, 417, 444
vertebral column, 382, 398, 428, 444
vesicle, 87
Vesicles, 67
vestigial structure, 270
vestigial structures, 259
vicariance, 263, 270
viral envelope, 451, 473
virion, 451, 473
vitamin, 444
Vitamins, 413
viviparity, 482, 496

w

water vascular system, 380, 398
wavelength, 123, 132
wetland, 565
Wetlands, 562
whisk fern, 352
whisk ferns, 336
white blood cell, 457, 473
white-nose syndrome, 580, 590

Whole genome sequencing, 238
whole genome sequencing, 245
wild type, 187, 195

X

X inactivation, 166, 171
X-linked, 188, 195
Xylem, 334
xylem, 352

Y

yeast, 320
yeasts, 312

Z

zero population growth, 505, 526
zona pellucida, 483, 496
Zygomycota, 314, 320

