ASYMPTOTIC STABILITY OF SOLUTIONS FOR A CLASS OF NONLINEAR FUNCTIONAL INTEGRAL EQUATIONS OF FRACTIONAL ORDER


ÇAKAN Ü., OZDEMIR I.

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, cilt.53, sa.2, ss.256-288, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 53 Sayı: 2
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1556/012.2016.53.2.1332
  • Dergi Adı: STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.256-288
  • Anahtar Kelimeler: Nonlinear integral equations, measure of noncompactness, asymptotic stability, Darbo fixed-point theorem, Riemann-Liouville fractional integral, NONDECREASING SOLUTIONS, MONOTONIC SOLUTIONS, LOCAL ATTRACTIVITY, VOLTERRA TYPE, ABEL TYPE, EXISTENCE, NONCOMPACTNESS, BEHAVIOR, SOLVABILITY
  • İnönü Üniversitesi Adresli: Evet

Özet

In this paper, using a Darbo type fixed point theorem associated with the measure of noncompactness we prove a theorem on the existence of asymptotically stable solutions of some nonlinear functional integral equations in the space of continuous and bounded functions on R+ = [ 0,infinity). We also give some examples satisfying the conditions our existence theorem.